Motor neuron

运动神经元
  • 文章类型: Journal Article
    运动神经元持续内向电流(PIC)由神经调节输入促进,但对局部抑制电路高度敏感。PICs的估计值被Ia组相互抑制降低,并随着远程肌肉收缩过程中释放的神经调节剂的扩散作用而增加。然而,目前尚不清楚运动神经元在同时存在兴奋性和抑制性命令时如何发挥作用。要探究此主题,我们调查了踝关节肌肉自愿共收缩过程中的运动单位放电模式和估计的PICs,同时需要激动剂-拮抗剂对的收缩。20名参与者进行了共同收缩(同时背屈和足底屈曲)和等距背屈的三角斜坡,从最大自愿收缩到其最大肌肉活动的30%的峰值。使用盲源分离算法,从胫骨前肌记录的高密度表面EMG活动中分解出运动单位的尖峰序列。自愿共收缩改变了运动单位放电率特征。招募时的放电率和高峰放电率均适度降低(〜6%变化;P<0.001;d=0.22)并增加(〜2%变化;P=0.001,d=-0.19),分别,在整个数据集中,但在不同条件下跟踪运动单位时没有观察到变化。共同收缩过程中最大的影响是PIC(ΔF)的估计值降低了约20%(4.47vs.在等距背屈期间每秒5.57个脉冲;P<0.001,d=0.641)。这些发现表明,在自愿共同收缩期间,来自拮抗剂肌肉的抑制性输入克服了由于拮抗剂肌肉的共同收缩而可能发生的额外的兴奋性和神经调节驱动,这限制了PIC行为。关键点:自愿共收缩是一种独特的运动行为,同时为运动神经元提供兴奋性和抑制性突触输入。激动剂-拮抗剂对的共收缩改变了激动剂运动单位放电特征,与持续内向电流大小的减少一致。
    Motoneuronal persistent inward currents (PICs) are facilitated by neuromodulatory inputs but are highly sensitive to local inhibitory circuits. Estimates of PICs are reduced by group Ia reciprocal inhibition, and increased with the diffuse actions of neuromodulators released during remote muscle contraction. However, it remains unknown how motoneurons function in the presence of simultaneous excitatory and inhibitory commands. To probe this topic, we investigated motor unit discharge patterns and estimated PICs during voluntary co-contraction of ankle muscles, which simultaneously demands the contraction of agonist-antagonist pairs. Twenty participants performed triangular ramps of both co-contraction (simultaneous dorsiflexion and plantar flexion) and isometric dorsiflexion to a peak of 30% of their maximum muscle activity from a maximal voluntary contraction. Motor unit spike trains were decomposed from high-density surface EMG activity recorded from tibialis anterior using blind source separation algorithms. Voluntary co-contraction altered motor unit discharge rate characteristics. Discharge rate at recruitment and peak discharge rate were modestly reduced (∼6% change; P < 0.001; d = 0.22) and increased (∼2% change; P = 0.001, d = -0.19), respectively, in the entire dataset but no changes were observed when motor units were tracked across conditions. The largest effects during co-contraction were that estimates of PICs (ΔF) were reduced by ∼20% (4.47 vs. 5.57 pulses per second during isometric dorsiflexion; P < 0.001, d = 0.641). These findings suggest that, during voluntary co-contraction, the inhibitory input from the antagonist muscle overcomes the additional excitatory and neuromodulatory drive that may occur due to the co-contraction of the antagonist muscle, which constrains PIC behaviour. KEY POINTS: Voluntary co-contraction is a unique motor behaviour that concurrently provides excitatory and inhibitory synaptic input to motoneurons. Co-contraction of agonist-antagonist pairs alters agonist motor unit discharge characteristics, consistent with reductions in persistent inward current magnitude.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肌萎缩侧索硬化症是一种破坏性的神经退行性疾病,其特征是运动神经元死亡和远端轴突病变。尽管其临床严重程度和对患者及其家人的深远影响,关于其发病机制的许多问题仍不清楚,包括雪旺氏细胞和轴突-神经胶质信号在疾病进展中的作用。在轴突损伤时,JUN转录因子的上调促进雪旺氏细胞重编程为有利于轴突再生和神经元存活的修复表型。研究雪旺氏细胞修复对肌萎缩侧索硬化症运动神经元存活的潜在作用。我们产生了一个在SOD1G93A突变体的施万细胞中过表达JUN的小鼠系,这种疾病的小鼠模型。然后,我们通过评估生存率来探索疾病进展,这些小鼠的周围神经和脊髓的运动表现和组织学。我们发现,在SOD1G93A小鼠中,雪旺氏细胞JUN过表达既不能防止轴突变性,也不能防止运动神经元死亡。相反,它诱导中型和大型轴突的部分脱髓鞘,运动表现恶化,导致疾病表型更具侵略性。
    Amyotrophic lateral sclerosis is a devastating neurodegenerative disease characterized by motor neuron death and distal axonopathy. Despite its clinical severity and profound impact in the patients and their families, many questions about its pathogenesis remain still unclear, including the role of Schwann cells and axon-glial signaling in disease progression. Upon axonal injury, upregulation of JUN transcription factor promotes Schwann cell reprogramming into a repair phenotype that favors axon regrowth and neuronal survival. To study the potential role of repair Schwann cells on motoneuron survival in amyotrophic lateral sclerosis, we generated a mouse line that over-expresses JUN in the Schwann cells of the SOD1G93A mutant, a mouse model of this disease. Then, we explored disease progression by evaluating survival, motor performance and histology of peripheral nerves and spinal cord of these mice. We found that Schwann cell JUN overexpression does not prevent axon degeneration neither motor neuron death in the SOD1G93A mice. Instead, it induces a partial demyelination of medium and large size axons, worsening motor performance and resulting in more aggressive disease phenotype.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    遗传工具的可用性严重限制了对哺乳动物脊髓内细胞类型的实验访问。为了能够访问较低的运动神经元(LMN)和LMN亚型,它的功能是整合来自大脑的信息,并通过效应肌的直接神经支配来控制运动,我们从小鼠和猕猴脊髓中生成了单细胞多体组数据集,并发现了每个神经元群体的推定增强剂。我们将这些增强子克隆到驱动报告荧光团的腺相关病毒载体(AAV)中,并在小鼠中对其进行功能筛选。然后使用成像和分子技术对最有前途的候选增强剂进行了广泛表征,并在大鼠和猕猴中进行了进一步测试,以显示LMN标记的保守性。此外,我们将增强子元件组合到单个载体中,以实现上运动神经元(UMN)和LMN的同时标记。这个前所未有的LMN工具包将使未来研究跨物种的细胞类型功能以及人类神经退行性疾病的潜在治疗干预措施成为可能。
    Experimental access to cell types within the mammalian spinal cord is severely limited by the availability of genetic tools. To enable access to lower motor neurons (LMNs) and LMN subtypes, which function to integrate information from the brain and control movement through direct innervation of effector muscles, we generated single cell multiome datasets from mouse and macaque spinal cords and discovered putative enhancers for each neuronal population. We cloned these enhancers into adeno-associated viral vectors (AAVs) driving a reporter fluorophore and functionally screened them in mouse. The most promising candidate enhancers were then extensively characterized using imaging and molecular techniques and further tested in rat and macaque to show conservation of LMN labeling. Additionally, we combined enhancer elements into a single vector to achieve simultaneous labeling of upper motor neurons (UMNs) and LMNs. This unprecedented LMN toolkit will enable future investigations of cell type function across species and potential therapeutic interventions for human neurodegenerative diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    利用新的完整的纳米分辨率果蝇幼虫连接体的最新研究在识别运动模式的结构基础方面取得了重大进展。然而,神经元用于连接这些电路的分子机制仍然知之甚少。在这项研究中,我们探索了两种Dscam2亚型的细胞特异性表达,介导同工型特异性同型结合,有助于果蝇幼虫的运动模式和输出。消融Dscam2同工型多样性导致运动受损。在虚构的运动过程中,神经肌肉接头处的电生理评估表明,这种行为缺陷主要是由运动神经元活动较弱引起的。使用MultiColourFlpOut对单个运动神经元进行形态学分析,发现树突白化存在严重错误,对胆碱能和GABA能投射到运动域的评估揭示了中间神经元过程的形态改变。Dscam2的损失不影响运动输出,运动神经元激活或树突靶向。因此,我们的发现表明,当运动前中间神经元和运动神经元表达相同的同工型时,运动回路表型特别是由Dscam2相互作用引起的。的确,我们在这里报道一阶运动前中间神经元表达Dscam2A。由于运动神经元表达Dscam2B,我们的结果提供了Dscam2同工型表达在神经索突触伴侣之间交替的证据.我们的研究证明了细胞特异性可变剪接在建立神经运动模式基础的电路而不诱导不需要的细胞间相互作用中的重要性。
    Recent studies capitalizing on the newly complete nanometer-resolution Drosophila larval connectome have made significant advances in identifying the structural basis of motor patterning. However, the molecular mechanisms utilized by neurons to wire these circuits remain poorly understood. In this study we explore how cell-specific expression of two Dscam2 isoforms, which mediate isoform-specific homophilic binding, contributes to motor patterning and output of Drosophila larvae. Ablating Dscam2 isoform diversity resulted in impaired locomotion. Electrophysiological assessment at the neuromuscular junction during fictive locomotion indicated that this behavioral defect was largely caused by weaker bouts of motor neuron activity. Morphological analyses of single motor neurons using MultiColour FlpOut revealed severe errors in dendrite arborization and assessment of cholinergic and GABAergic projections to the motor domain revealed altered morphology of interneuron processes. Loss of Dscam2 did not affect locomotor output, motor neuron activation or dendrite targeting. Our findings thus suggest that locomotor circuit phenotypes arise specifically from inappropriate Dscam2 interactions between premotor interneurons and motor neurons when they express the same isoform. Indeed, we report here that first-order premotor interneurons express Dscam2A. Since motor neurons express Dscam2B, our results provide evidence that Dscam2 isoform expression alternates between synaptic partners in the nerve cord. Our study demonstrates the importance of cell-specific alternative splicing in establishing the circuitry that underlies neuromotor patterning without inducing unwanted intercellular interactions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经周围网(PNN)是围绕可兴奋神经元及其近端树突的细胞外基质结构。PNN在抗氧化应激的神经保护中起重要作用。运动神经元内的氧化应激可以作为神经元死亡的触发因素,这与肌萎缩侧索硬化症(ALS)的运动神经元变性有关。因此,我们在突变型TDP-43Q331K转基因小鼠中表征了α运动神经元周围的PNN和可能的促成细胞因子,缓慢发作的ALS小鼠模型。与野生型品系对照小鼠相比,TDP-43Q331K小鼠中α运动神经元周围的PNN在中期疾病中显示出明显的损失。PNN丢失与基质金属肽酶-9(MMP-9)表达增加同时发生,一种已知切割PNN的内肽酶,在腹角内。在疾病中期,TDP-43Q331K小鼠腹角中表达MMP-9的小胶质细胞和星形胶质细胞数量增加。此外,TDP-43Q331K小鼠显示聚集蛋白聚糖水平升高,PNN组件,在此期间,小胶质细胞和星形胶质细胞在腹角。神经胶质内聚集蛋白聚糖水平升高伴随着fractalkine表达的增加,负责招募小胶质细胞的趋化性蛋白,在起始和中期TDP-43Q331K小鼠的α运动神经元中。在PNN丢失之后,中期TDP-43Q331K小鼠的α运动神经元显示3-硝基酪氨酸表达增加,蛋白质氧化的指标。一起,我们的观察结果以及之前的PNN研究表明,在TDP-43Q331K小鼠中,表达MMP-9的小胶质细胞和星形胶质细胞降解α运动神经元周围的PNN的可能模型.网的这种丢失可能会使α运动神经元暴露于氧化损伤,从而导致TDP-43Q331KALS小鼠模型中的α运动神经元变性。
    Perineuronal nets (PNNs) are extracellular matrix structures that surround excitable neurons and their proximal dendrites. PNNs play an important role in neuroprotection against oxidative stress. Oxidative stress within motor neurons can act as a trigger for neuronal death, and this has been implicated in motor neuron degeneration in amyotrophic lateral sclerosis (ALS). We therefore characterised PNNs around alpha motor neurons and the possible contributing cellular factors in the mutant TDP-43Q331K transgenic mouse, a slow onset ALS mouse model. PNNs around alpha motor neurons showed significant loss at mid-stage disease in TDP-43Q331K mice compared to wild type strain control mice. PNN loss coincided with an increased expression of matrix metallopeptidase-9 (MMP-9), an endopeptidase known to cleave PNNs, within the ventral horn. During mid-stage disease, increased numbers of microglia and astrocytes expressing MMP-9 were present in the ventral horn of TDP-43Q331K mice. In addition, TDP-43Q331K mice showed increased levels of aggrecan, a PNN component, in the ventral horn by microglia and astrocytes during this period. Elevated aggrecan levels within glia were accompanied by an increase in fractalkine expression, a chemotaxic protein responsible for the recruitment of microglia, in alpha motor neurons of onset and mid-stage TDP-43Q331K mice. Following PNN loss, alpha motor neurons in mid-stage TDP-43Q331K mice showed increased 3-nitrotyrosine expression, an indicator of protein oxidation. Together, our observations along with previous PNN research provide suggests a possible model whereby microglia and astrocytes expressing MMP-9 degrade PNNs surrounding alpha motor neurons in the TDP-43Q331K mouse. This loss of nets may expose alpha-motor neurons to oxidative damage leading to degeneration of the alpha motor neurons in the TDP-43Q331K ALS mouse model.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这项研究调查了西洛他唑对运动功能障碍的影响,脊髓运动神经元异常,和糖尿病大鼠的schwannopathy。通过股静脉内链脲佐菌素(STZ)注射(60mg/kg)在大鼠中诱发糖尿病(DM)。DM诱导成功后,在第15天通过口服管饲法(100mg/kg/天)施用西洛他唑6周直至处死。行为分析,包括运动功能,每周进行一次。坐骨神经,L5脊髓,收集脊髓腹根,评估胶质纤维酸性蛋白(GFAP)的表达,髓磷脂蛋白零(P0),和胆碱乙酰转移酶(ChAT)通过免疫荧光和蛋白质印迹。DM大鼠表现出跑步速度下降,跑步距离,脚趾伸展,但增加了脚的压力。此外,在坐骨神经和L5脊髓腹根中观察到非髓鞘化雪旺氏细胞和髓鞘的丢失。在L5脊髓腹角中也发现运动神经元数量减少。西洛他唑的使用显着增强了跑步速度和距离;增加了后爪脚趾的伸展;并降低了脚部压力。在坐骨神经和L5脊髓腹根,西洛他唑治疗可显着改善非髓鞘施万细胞并增加髓鞘质量。脊髓腹角运动神经元中ChAT的表达得到改善,但不是很重要。西洛他唑可保护糖尿病大鼠的感觉运动功能。
    This study investigated the effects of cilostazol on motor dysfunction, spinal motor neuron abnormalities, and schwannopathy in rats with diabetes. Diabetes mellitus (DM) was induced in rats via femoral intravenous streptozotocin (STZ) injection (60 mg/kg). After successful DM induction, cilostazol was administered on day 15 via oral gavage (100 mg/kg/day) for 6 weeks until sacrifice. Behavioral assays, including motor function, were performed weekly. The sciatic nerve, L5 spinal cord, and spinal ventral root were collected to evaluate the expression of the glial fibrillary acidic protein (GFAP), myelin protein zero (P0), and choline acetyltransferase (ChAT) by immunofluorescence and Western blotting. DM rats displayed decreased running speeds, running distances, and toe spread but increased foot pressure. In addition, loss of non-myelinating Schwann cells and myelin sheaths was observed in the sciatic nerve and L5 spinal ventral root. Reduced numbers of motor neurons were also found in the L5 spinal ventral horn. Cilostazol administration significantly potentiated running speed and distance; increased hind paw toe spread; and decreased foot pressure. In the sciatic nerve and L5 spinal ventral root, cilostazol treatment significantly improved non-myelinated Schwann cells and increased myelin mass. ChAT expression in motor neurons in the spinal ventral horn was improved, but not significantly. Cilostazol administration may protect sensorimotor function in diabetic rats.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:肌萎缩侧索硬化症(ALS)的特征是进行性运动神经元(MN)变性,导致神经肌肉接头(NMJ)拆除和严重的肌肉萎缩。核受体相互作用蛋白(NRIP)作为多功能蛋白发挥作用。它直接与钙调蛋白或α-肌动蛋白2相互作用,充当肌肉收缩和维持肌节完整性的钙传感器。此外,NRIP与乙酰胆碱受体(AChR)结合以稳定NMJ。肌肉中NRIP的丢失导致进行性运动神经元变性,NMJ结构异常,类似ALS表型。因此,我们假设NRIP可能是ALS的治疗因素.
    方法:我们使用SOD1G93A小鼠,表达具有ALS连锁G93A突变的人SOD1,作为ALS模型。产生编码人NRIP基因(AAV-NRIP)的腺相关病毒载体,并将其注射到60日龄的SOD1G93A小鼠的肌肉中,在疾病发作之前。测量病理和行为变化以评估AAV-NRIP对SOD1G93A小鼠的疾病进展的治疗效果。
    结果:SOD1G93A小鼠在脊髓和骨骼肌组织中的NRIP表达均低于野生型小鼠。在骨骼肌中观察到通过AAV-NRIP肌内注射的强制NRIP表达并逆行转导到脊髓中。AAV-NRIP基因治疗提高了SOD1G93A小鼠的运动距离和饲养频率。此外,AAV-NRIP增加肌纤维大小和肌球蛋白表达缓慢,改善NMJ变性和轴突终末神经支配,并增加SOD1G93A小鼠的α运动神经元(α-MNs)和复合肌肉动作电位(CMAP)的数量。
    结论:AAV-NRIP基因治疗可改善肌肉萎缩,运动神经元变性,NMJ的轴突末端神经支配,导致SOD1G93A小鼠NMJ传递增加和运动功能改善。总的来说,AAV-NRIP可能是ALS的潜在治疗药物。
    BACKGROUND: Amyotrophic lateral sclerosis (ALS) is characterized by progressive motor neuron (MN) degeneration, leading to neuromuscular junction (NMJ) dismantling and severe muscle atrophy. The nuclear receptor interaction protein (NRIP) functions as a multifunctional protein. It directly interacts with calmodulin or α-actinin 2, serving as a calcium sensor for muscle contraction and maintaining sarcomere integrity. Additionally, NRIP binds with the acetylcholine receptor (AChR) for NMJ stabilization. Loss of NRIP in muscles results in progressive motor neuron degeneration with abnormal NMJ architecture, resembling ALS phenotypes. Therefore, we hypothesize that NRIP could be a therapeutic factor for ALS.
    METHODS: We used SOD1 G93A mice, expressing human SOD1 with the ALS-linked G93A mutation, as an ALS model. An adeno-associated virus vector encoding the human NRIP gene (AAV-NRIP) was generated and injected into the muscles of SOD1 G93A mice at 60 days of age, before disease onset. Pathological and behavioral changes were measured to evaluate the therapeutic effects of AAV-NRIP on the disease progression of SOD1 G93A mice.
    RESULTS: SOD1 G93A mice exhibited lower NRIP expression than wild-type mice in both the spinal cord and skeletal muscle tissues. Forced NRIP expression through AAV-NRIP intramuscular injection was observed in skeletal muscles and retrogradely transduced into the spinal cord. AAV-NRIP gene therapy enhanced movement distance and rearing frequencies in SOD1 G93A mice. Moreover, AAV-NRIP increased myofiber size and slow myosin expression, ameliorated NMJ degeneration and axon terminal denervation at NMJ, and increased the number of α-motor neurons (α-MNs) and compound muscle action potential (CMAP) in SOD1 G93A mice.
    CONCLUSIONS: AAV-NRIP gene therapy ameliorates muscle atrophy, motor neuron degeneration, and axon terminal denervation at NMJ, leading to increased NMJ transmission and improved motor functions in SOD1 G93A mice. Collectively, AAV-NRIP could be a potential therapeutic drug for ALS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管多动症与各种各样的神经发育障碍有关,运动的早期胚胎起源阻碍了对这些衰弱行为发病机理的研究。脊椎动物中最早的运动输出是由占据脊髓不同区域的早期出生的运动神经元簇产生的。神经支配刻板的肌肉群。缝隙连接电突触驱动斑马鱼的早期自发行为,在化学神经递质网络出现之前。我们使用多动症的遗传模型来深入了解电机电路形成和功能错误的后果,发现脆性X综合征(FXS)模型突变斑马鱼从自发行为的最早阶段就可以过度兴奋,显示对电间隙连接阻塞的敏感性改变,并增加了间隙连接蛋白连接蛋白34/35的表达。我们进一步表明,这种过度兴奋的行为可以通过药理学抑制电突触来挽救。我们还使用功能成像来检查早期胚胎发生中的运动神经元和中间神经元活动,发现电缝隙连接的遗传破坏使mnx1运动神经元和中间神经元之间的活动解耦。一起来看,我们的工作强调了电突触在运动发育中的重要性,并表明神经发育障碍多动症的起源可能是在机车电路的初始形成过程中建立的。重要性陈述神经发育障碍多动症的起源在脊椎动物系统中很难确定。斑马鱼机车电路在早期胚胎发生中启动,定义的运动神经元和中间神经元驱动最早的机车运动。使用多动症的遗传模型,我们表明,脆性X综合征模型fmr1突变胚胎表现出过度兴奋的行为,并在运动电路神经元上表达过量的间隙连接连接蛋白。我们进一步表明,这种过度兴奋的行为可以通过药理学抑制电突触来挽救。一起来看,这些数据表明过度活跃的行为始于神经发育的最早阶段。
    Although hyperactivity is associated with a wide variety of neurodevelopmental disorders, the early embryonic origins of locomotion have hindered investigation of pathogenesis of these debilitating behaviors. The earliest motor output in vertebrate animals is generated by clusters of early-born motor neurons (MNs) that occupy distinct regions of the spinal cord, innervating stereotyped muscle groups. Gap junction electrical synapses drive early spontaneous behavior in zebrafish, prior to the emergence of chemical neurotransmitter networks. We use a genetic model of hyperactivity to gain critical insight into the consequences of errors in motor circuit formation and function, finding that Fragile X syndrome model mutant zebrafish are hyperexcitable from the earliest phases of spontaneous behavior, show altered sensitivity to blockade of electrical gap junctions, and have increased expression of the gap junction protein Connexin 34/35. We further show that this hyperexcitable behavior can be rescued by pharmacological inhibition of electrical synapses. We also use functional imaging to examine MN and interneuron (IN) activity in early embryogenesis, finding genetic disruption of electrical gap junctions uncouples activity between mnx1 + MNs and INs. Taken together, our work highlights the importance of electrical synapses in motor development and suggests that the origins of hyperactivity in neurodevelopmental disorders may be established during the initial formation of locomotive circuits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:常规F波分析涉及由超最大刺激引起的相对均匀的生理环境。动态生理条件下的F波特征,然而,很少被调查。本研究旨在通过引入一种基于复合肌肉动作电位(CMAP)扫描技术分析F波的新颖方法,来提高对更动态过程中F波特性的理解。
    方法:24名健康受试者参与研究。CMAP扫描用于记录短肌外展肌(APB)和极小指外展肌(ADM)的肌肉反应,分别。F波特征包括平均F波振幅和延迟(F-M延迟),对持久性和激活阈值进行量化。
    结果:从CMAP扫描记录中获得平均每块肌肉200个F波。在大多数APB(19块肌肉;r=0.33±0.14,所有p<.05)和ADM(23块肌肉,r=0.46±0.16,所有p<.05)肌肉。在ADM肌肉中发现了明显更长的平均F潜伏期和更低的激活F阈值(F-M潜伏期:APB:25.43±2.39ms,ADM:26.15±2.32ms,p<.05;F阈值:APB:7.68±8.96%CMAP,ADM:2.35±2.42%CMAP,p<.05)。
    结论:本研究使用CMAP扫描技术介绍了F波的新特征,并确定了手部肌肉之间F波特征的差异。基于CMAP扫描的F波分析可以与运动单位数估计组合以评估神经障碍中运动神经元的功能改变。
    OBJECTIVE: Conventional F wave analysis involves a relatively uniform physiological environment induced by supramaximal stimulations. The F wave characteristics in a dynamic physiological condition, however, are rarely investigated. This study aimed to improve understanding of F wave properties in the more dynamic process by introducing a novel method to analyze F waves based on the compound muscle action potential (CMAP) scan technique.
    METHODS: Twenty four healthy subjects participated in the study. The CMAP scan was applied to record muscle responses in the abductor pollicis brevis (APB) and abductor digiti minimi (ADM) muscles, respectively. F wave characteristics including mean F wave amplitude and latency (F-M latency), persistence and activating threshold were quantified.
    RESULTS: An average of 200 F waves per muscle were obtained from the CMAP scan recording. Weak to moderate correlations between F wave amplitude and stimulating intensity were observed in most of the APB (19 muscles; r = 0.33 ± 0.14, all p < .05) and ADM (23 muscles, r = 0.46 ± 0.16, all p < .05) muscles. Significantly longer mean F latency and lower activating F-threshold were found in the ADM muscles (F-M latency: APB: 25.43 ± 2.39 ms, ADM: 26.15 ± 2.32 ms, p < .05; F-threshold: APB: 7.68 ± 8.96% CMAP, ADM: 2.35 ± 2.42% CMAP, p < .05).
    CONCLUSIONS: This study introduces new features of F waves using the CMAP scan technique and identifies differences of F wave characteristics between the hand muscles. The CMAP scan based F waves analysis can be combined with the motor unit number estimation to assess functional alterations in motor neurons in neurological disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    腕管综合征(CTS)是周围压迫性神经病的最常见原因,由腕部正中神经压迫组成。虽然有几种病因,特发性是最普遍的起源,在CTS的治疗形式中,保守是最明显的。然而,尽管这种综合症对医疗保健系统的患病率和影响很高,对于患者的最佳治疗方法仍存在争议.因此,注意到一些研究指出维生素D缺乏是一个独立的危险因素,增加了综合症的症状,这项研究评估了补充维生素D的作用及其对疼痛控制的影响,腕管综合征保守治疗的体格检查和反应性神经肌电图。为此,样本包括14例诊断为CTS和维生素D缺乏症的患者,他们被分为两组。对照组接受皮质类固醇治疗,而实验组接受与维生素D相关的皮质类固醇治疗。因此,从这项研究中,可以得出结论,接受维生素D的患者,与那些没有收到它的人相比,显示疼痛强度的改善,症状严重程度的降低和一些神经肌电图参数的改善。
    Carpal tunnel syndrome (CTS) is the most common cause of peripheral compressive neuropathy and consists of compression of the median nerve in the wrist. Although there are several etiologies, idiopathic is the most prevalent origin, and among the forms of treatment for CTS, conservative is the most indicated. However, despite the high prevalence in and impact of this syndrome on the healthcare system, there are still controversies regarding the best therapeutic approach for patients. Therefore, noting that some studies point to vitamin D deficiency as an independent risk factor, which increases the symptoms of the syndrome, this study evaluated the role of vitamin D supplementation and its influence on pain control, physical examination and response electroneuromyography to conservative treatment of carpal tunnel syndrome. For this, the sample consisted of 14 patients diagnosed with CTS and hypovitaminosis D, who were allocated into two groups. The control group received corticosteroid treatment, while the experimental group received corticosteroid treatment associated with vitamin D. Thus, from this study, it can be concluded that patients who received vitamin D, when compared to those who did not receive it, showed improvement in the degree of pain intensity, a reduction in symptom severity and an improvement in some electroneuromyographic parameters.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号