Moonlighting function

月光照明功能
  • 文章类型: Journal Article
    白天的暗光和明暗转变是叶片代谢的开关点,强烈影响细胞的调节状态,并且这种变化被认为会影响翻译。胞质甘油醛-3-磷酸脱氢酶GAPC1和GAPC2在糖酵解中的功能,碳水化合物和能量代谢。但是GAPC1/C2在基因表达和转录后调控中也实现了月光作用。这项研究解决了在野生型(WT)拟南芥和gapc1/c2敲除系中,在夜间和白天结束时快速重新编程的翻译体,即实现灯开关后10分钟内。与WT相比,代谢物谱分析表明,在一天开始时,gapc1/c2的动力学降低,以增加一组代谢物,特别是柠檬酸循环和相关途径的中间体。在一天结束时还检测到代谢物变化的差异。总RNA池中只有一小部分转录本发生了变化,然而,RNAseq揭示了这些转变点的多体关联的主要改变。WT和gapc1/c2之间最明显的差异出现在夜间开始时翻译体的重组中。这些结果与所提出的假设一致,即GAPC1/C2在明/暗转换过程中在控制翻译细胞中起作用。
    Dark-light and light-dark transitions during the day are switching points of leaf metabolism that strongly affect the regulatory state of the cells, and this change is hypothesized to affect the translatome. The cytosolic glyceraldehyde-3-phosphate dehydrogenases GAPC1 and GAPC2 function in glycolysis, and carbohydrate and energy metabolism, but GAPC1/C2 also shows moonlighting functions in gene expression and post-transcriptional regulation. In this study we examined the rapid reprogramming of the translatome that occurs within 10 min at the end of the night and the end of the day in wild-type (WT) Arabidopsis and a gapc1/c2 double-knockdown mutant. Metabolite profiling compared to the WT showed that gapc1/c2 knockdown led to increases in a set of metabolites at the start of day, particularly intermediates of the citric acid cycle and linked pathways. Differences in metabolite changes were also detected at the end of the day. Only small sets of transcripts changed in the total RNA pool; however, RNA-sequencing revealed major alterations in polysome-associated transcripts at the light-transition points. The most pronounced difference between the WT and gapc1/c2 was seen in the reorganization of the translatome at the start of the night. Our results are in line with the proposed hypothesis that GAPC1/C2 play a role in the control of the translatome during light/dark transitions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    1型瓜氨酸血症(CTLN1)是一种罕见的常染色体隐性遗传尿素循环障碍,由胞质酶精氨酸琥珀酸合成酶1(ASS1)的缺乏引起,这是由于位于9q34.11号染色体上的ASS1基因的致病性变异。尽管子宫肌瘤亢进被认为是神经功能缺损和认知功能障碍的主要病理机制因素,在没有高氨代偿的情况下,相关的个体子集表现为神经退行性过程。在这里我们展示,反义介导的斑马鱼ASS1同源基因敲低诱导的ASS1缺陷与神经元分化缺陷有关,最终导致斑马鱼幼虫体内神经元细胞丢失和大脑大小连续减小。而缺乏ASS1的斑马鱼幼虫的特征是瓜氨酸的浓度显著升高-CTLN1的生化标志,L-瓜氨酸的积累,高氨血症或与之相关的继发性代谢改变没有解释观察到的表型.有趣的是,人ASS1mRNA的共同注射不仅使瓜氨酸浓度正常化,而且逆转了脑形态表型和恢复了脑大小,确认跨物种ASS1的保守功能特性。本研究的结果暗示了一种新颖的,ASS1蛋白在神经发育中的潜在非酶(月光)功能。
    Citrullinemia type 1 (CTLN1) is a rare autosomal recessive urea cycle disorder caused by deficiency of the cytosolic enzyme argininosuccinate synthetase 1 (ASS1) due to pathogenic variants in the ASS1 gene located on chromosome 9q34.11. Even though hyperammenomia is considered the major pathomechanistic factor for neurological impairment and cognitive dysfunction, a relevant subset of individuals presents with a neurodegenerative course in the absence of hyperammonemic decompensations. Here we show, that ASS1 deficiency induced by antisense-mediated knockdown of the zebrafish ASS1 homologue is associated with defective neuronal differentiation ultimately causing neuronal cell loss and consecutively decreased brain size in zebrafish larvae in vivo. Whereas ASS1-deficient zebrafish larvae are characterized by markedly elevated concentrations of citrulline - the biochemical hallmark of CTLN1, accumulation of L-citrulline, hyperammonemia or therewith associated secondary metabolic alterations did not account for the observed phenotype. Intriguingly, coinjection of the human ASS1 mRNA not only normalized citrulline concentration but also reversed the morphological cerebral phenotype and restored brain size, confirming conserved functional properties of ASS1 across species. The results of the present study imply a novel, potentially non-enzymatic (moonlighting) function of the ASS1 protein in neurodevelopment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过内在的细胞自主机制和来自肿瘤微环境的外部影响,癌细胞中的生物钟和细胞代谢都失调。生物钟和癌细胞代谢之间复杂的相互作用控制着各种代谢过程,包括有氧糖酵解,从头核苷酸合成,谷氨酰胺和蛋白质代谢,脂质代谢,线粒体代谢,和癌细胞中的氧化还原稳态。重要的是,致癌信号可以赋予核心时钟基因月光功能,有效地重塑细胞代谢以促进癌细胞增殖并驱动肿瘤生长。这些交织的调控机制构成了癌细胞代谢的一个显著特征。
    The circadian clock and cell metabolism are both dysregulated in cancer cells through intrinsic cell-autonomous mechanisms and external influences from the tumor microenvironment. The intricate interplay between the circadian clock and cancer cell metabolism exerts control over various metabolic processes, including aerobic glycolysis, de novo nucleotide synthesis, glutamine and protein metabolism, lipid metabolism, mitochondrial metabolism, and redox homeostasis in cancer cells. Importantly, oncogenic signaling can confer a moonlighting function on core clock genes, effectively reshaping cellular metabolism to fuel cancer cell proliferation and drive tumor growth. These interwoven regulatory mechanisms constitute a distinctive feature of cancer cell metabolism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    代谢酶支链氨基酸转氨酶1(BCAT1)在侵袭性癌症(如胶质母细胞瘤)中驱动细胞增殖。这里,我们显示BCAT1定位于有丝分裂结构,并具有作为有丝分裂调节因子的非代谢功能。此外,BCAT1对于癌症中的染色体分离以及人脑类器官和小鼠共移植模型中的诱导多能干细胞和肿瘤生长是必需的。应用基因敲除和拯救策略,我们表明,BCAT1CXXC氧化还原基序是关键的控制半胱氨酸磺酰化特异性在有丝分裂细胞,促进极光激酶B定位到着丝粒,并确保准确的染色体分离。这些发现为BCAT1在促进癌细胞增殖中的公认作用提供了解释。总之,我们的数据将BCAT1确定为有丝分裂器的组成部分,通过月光氧化还原功能保护有丝分裂的保真度。
    The metabolic enzyme branched-chain amino acid transaminase 1 (BCAT1) drives cell proliferation in aggressive cancers such as glioblastoma. Here, we show that BCAT1 localizes to mitotic structures and has a non-metabolic function as a mitotic regulator. Furthermore, BCAT1 is required for chromosome segregation in cancer and induced pluripotent stem cells and tumor growth in human cerebral organoid and mouse syngraft models. Applying gene knockout and rescue strategies, we show that the BCAT1 CXXC redox motif is crucial for controlling cysteine sulfenylation specifically in mitotic cells, promoting Aurora kinase B localization to centromeres, and securing accurate chromosome segregation. These findings offer an explanation for the well-established role of BCAT1 in promoting cancer cell proliferation. In summary, our data establish BCAT1 as a component of the mitotic apparatus that safeguards mitotic fidelity through a moonlighting redox functionality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Schistosomiasis is a debilitating parasitic disease caused by intravascular flatworms called schistosomes (blood flukes) that affects >200 million people worldwide. Proteomic analysis has revealed the surprising presence of classical glycolytic enzymes - typically cytosolic proteins - located on the extracellular surface of the parasite tegument (skin). Immunolocalization experiments show that phosphoglycerate mutase (PGM) is widely expressed in parasite tissues and is highly expressed in the tegument. We demonstrate that live Schistosoma mansoni parasites express enzymatically active PGM on their tegumental surface. Suppression of PGM using RNA interference (RNAi) diminishes S. mansoni PGM (SmPGM) gene expression, protein levels, and surface enzyme activity. Sequence comparisons place SmPGM in the cofactor (2,3-bisphosphoglycerate)-dependent PGM (dPGM) family. We have produced recombinant SmPGM (rSmPGM) in an enzymatically active form in Escherichia coli. The Michaelis-Menten constant (Km) of rSmPGM for its glycolytic substrate (3-phosphoglycerate) is 0.85 mM ± 0.02. rSmPGM activity is inhibited by the dPGM-specific inhibitor vanadate. Here, we show that rSmPGM not only binds to plasminogen but also promotes its conversion to an active form (plasmin) in vitro. This supports the hypothesis that host-interactive tegumental proteins (such as SmPGM), by enhancing plasmin formation, may help degrade blood clots around the worms in the vascular microenvironment and thus promote parasite survival in vivo.
    UNASSIGNED: La phosphoglycérate mutase de Schistosoma mansoni – une ectoenzyme glycolytique avec un potentiel thrombolytique.
    UNASSIGNED: La schistosomiase est une maladie parasitaire débilitante causée par des vers plats intravasculaires appelés schistosomes qui affecte plus de 200 millions de personnes dans le monde. L’analyse protéomique a révélé la présence surprenante d’enzymes glycolytiques classiques – typiquement des protéines cytosoliques – situées sur la surface extracellulaire du tégument du parasite. Des expériences d’immunolocalisation montrent que la phosphoglycérate mutase (PGM) est largement exprimée dans les tissus parasitaires et fortement exprimée dans le tégument. Nous démontrons que les parasites Schistosoma mansoni vivants expriment une PGM enzymatiquement active sur leur surface tégumentaire. La suppression de la PGM à l’aide de l’interférence ARN (ARNi) diminue l’expression du gène PGM de S. mansoni (SmPGM), les niveaux de protéines et l’activité enzymatique de surface. Les comparaisons de séquences placent la SmPGM dans la famille des PGM dépendantes du cofacteur (2,3-bisphosphoglycérate) (dPGM). Nous avons produit de la SmPGM recombinante (rSmPGM) sous une forme enzymatiquement active dans Escherichia coli. La constante de Michaelis-Menten (Km) de rSmPGM pour son substrat glycolytique (3-phosphoglycérate) est de 0,85 mM ± 0,02. L’activité de la rSmPGM est inhibée par le vanadate, un inhibiteur spécifique des dPGM. Ici, nous montrons que rSmPGM non seulement se lie au plasminogène mais favorise également sa conversion en une forme active (plasmine) in vitro. Cela soutient l’hypothèse selon laquelle les protéines tégumentaires interactives avec l’hôte (telles que SmPGM), en améliorant la formation de plasmine, peuvent aider à dégrader les caillots sanguins autour des vers dans le microenvironnement vasculaire et ainsi favoriser la survie du parasite in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    尽管在酵母中单个基因的移植在阐明后生动物的基因功能中起着关键作用,技术挑战阻碍了完整途径和过程的人性化。得益于合成生物学的进步,这项研究证明了酵母糖酵解完全人源化的可行性和实施。单基因和全途径移植揭示了糖酵解和月光功能的显着保守性,结合进化策略,带来了与上下文相关的反应。人己糖激酶1和2,而不是4,需要在其催化或变构位点突变以在酵母中发挥功能,而己糖激酶3无法补充其酵母直系同源物。与人体组织培养物的比较显示,酵母和人细胞培养物中的人糖酵解酶的周转数得以保留。这种完整的基本途径移植的证明为建立物种铺平了道路-,组织-,和疾病特异性后生动物模型。
    Although transplantation of single genes in yeast plays a key role in elucidating gene functionality in metazoans, technical challenges hamper humanization of full pathways and processes. Empowered by advances in synthetic biology, this study demonstrates the feasibility and implementation of full humanization of glycolysis in yeast. Single gene and full pathway transplantation revealed the remarkable conservation of glycolytic and moonlighting functions and, combined with evolutionary strategies, brought to light context-dependent responses. Human hexokinase 1 and 2, but not 4, required mutations in their catalytic or allosteric sites for functionality in yeast, whereas hexokinase 3 was unable to complement its yeast ortholog. Comparison with human tissues cultures showed preservation of turnover numbers of human glycolytic enzymes in yeast and human cell cultures. This demonstration of transplantation of an entire essential pathway paves the way for establishment of species-, tissue-, and disease-specific metazoan models.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    果糖1,6-二磷酸醛缩酶是一种普遍存在的胞浆酶,可催化糖酵解的第四步。醛缩酶分为三类:I类,IA类,和II类;所有类别都具有相似的结构特征,但氨基酸同一性低。除了它们在碳水化合物代谢中的保守作用,已经报道醛缩酶执行许多非酶功能。在这里,我们回顾了这种经典酶的无数“月光”功能,其中许多都集中在它与一系列影响细胞支架的伴侣蛋白结合的能力上,信令,转录,和运动性。除了胞质位置,醛缩酶已被发现在几种致病菌的细胞外表面,真菌,原生动物,和后生动物。在细胞外空间,据报道,该酶具有增强毒力的月光功能,例如,纤溶酶原结合,宿主细胞粘附,和免疫调节。醛缩酶的重要性使其成为药物靶标和疫苗候选物。在这次审查中,我们注意到已经合成的几种抑制剂对病原体和癌细胞的醛缩酶具有高特异性,并且已经显示出抑制经典酶活性和月光功能。我们还回顾了许多试验,其中重组醛缩酶已被用作针对多种病原生物(包括细菌)的疫苗靶标。真菌,和后生寄生虫.大多数这样的试验对攻击感染产生了显著的保护作用,与抗原特异性细胞和体液免疫反应相关。我们认为,应鼓励醛缩酶抗原制剂的改进和免疫试验的扩大,以促进有希望的进展。保护性醛缩酶疫苗。
    Fructose 1,6-bisphosphate aldolase is a ubiquitous cytosolic enzyme that catalyzes the fourth step of glycolysis. Aldolases are classified into three groups: Class-I, Class-IA, and Class-II; all classes share similar structural features but low amino acid identity. Apart from their conserved role in carbohydrate metabolism, aldolases have been reported to perform numerous non-enzymatic functions. Here we review the myriad \"moonlighting\" functions of this classical enzyme, many of which are centered on its ability to bind to an array of partner proteins that impact cellular scaffolding, signaling, transcription, and motility. In addition to the cytosolic location, aldolase has been found the extracellular surface of several pathogenic bacteria, fungi, protozoans, and metazoans. In the extracellular space, the enzyme has been reported to perform virulence-enhancing moonlighting functions e.g., plasminogen binding, host cell adhesion, and immunomodulation. Aldolase\'s importance has made it both a drug target and vaccine candidate. In this review, we note the several inhibitors that have been synthesized with high specificity for the aldolases of pathogens and cancer cells and have been shown to inhibit classical enzyme activity and moonlighting functions. We also review the many trials in which recombinant aldolases have been used as vaccine targets against a wide variety of pathogenic organisms including bacteria, fungi, and metazoan parasites. Most of such trials generated significant protection from challenge infection, correlated with antigen-specific cellular and humoral immune responses. We argue that refinement of aldolase antigen preparations and expansion of immunization trials should be encouraged to promote the advancement of promising, protective aldolase vaccines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Moonlighting proteins are defined as proteins with two or more functions that are unrelated and independent to each other, so that inactivation of one of them should not affect the second one and vice versa. Intriguingly, all the glycolytic enzymes are described as moonlighting proteins in some organisms. Hexokinase (HXK) is a critical enzyme in the glycolytic pathway and displays a wide range of functions in different organisms such as fungi, parasites, mammals, and plants. This review discusses HXKs moonlighting functions in depth since they have a profound impact on the responses to nutritional, environmental, and disease challenges. HXKs\' activities can be as diverse as performing metabolic activities, as a gene repressor complexing with other proteins, as protein kinase, as immune receptor and regulating processes like autophagy, programmed cell death or immune system responses. However, most of those functions are particular for some organisms while the most common moonlighting HXK function in several kingdoms is being a glucose sensor. In this review, we also analyze how different regulation mechanisms cause HXK to change its subcellular localization, oligomeric or conformational state, the response to substrate and product concentration, and its interactions with membrane, proteins, or RNA, all of which might impact the HXK moonlighting functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    癌症的发展是一个复杂的过程,受多种信号通路相互作用的控制,并受到肿瘤微环境中氧气和营养可及性的抑制。使用多种营养素来适应代谢应激的高可塑性是癌细胞的标志之一。为了应对营养胁迫并满足细胞快速增殖的要求,癌细胞重新编程代谢途径,以吸收更多的葡萄糖,并协调能量和生物合成中间体的产生。这些作用涉及通过癌蛋白和代谢酶的月光功能进行的基因表达和活性调节。信号-月光蛋白-代谢轴促进肿瘤细胞在不同环境条件下的适应,可以作为癌症治疗的治疗目标。
    Cancer development is a complicated process controlled by the interplay of multiple signaling pathways and restrained by oxygen and nutrient accessibility in the tumor microenvironment. High plasticity in using diverse nutrients to adapt to metabolic stress is one of the hallmarks of cancer cells. To respond to nutrient stress and to meet the requirements for rapid cell proliferation, cancer cells reprogram metabolic pathways to take up more glucose and coordinate the production of energy and intermediates for biosynthesis. Such actions involve gene expression and activity regulation by the moonlighting function of oncoproteins and metabolic enzymes. The signal - moonlighting protein - metabolism axis facilitates the adaptation of tumor cells under varying environment conditions and can be therapeutically targeted for cancer treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    尿嘧啶的C5甲基化形成5-甲基尿嘧啶(m5U)是核酸的普遍存在的碱基修饰。使用不同的化学溶液,四个酶家族已经汇聚以催化这种甲基化。这里,我们研究了Mollicutes中5-甲基尿嘧啶合酶家族的进化,经历了广泛基因组侵蚀的一类细菌。许多粘液已经失去了存在于其共同祖先中的一些m5U甲基转移酶。还描述了重复和随后的功能转移的情况。例如,螺旋体亚组的大多数成员使用祖先的四氢叶酸依赖性TrmFO酶来催化tRNA中m5U54的形成,而TrmFO同系物(称为RlmFO)负责23SrRNA中m5U1939的形成。RlmFO已取代了S-腺苷-L-甲硫氨酸(SAM)-酶RlmD,该酶在祖先中添加了相同的修饰,并且仍然存在于人类亚组的软体动物中。这个家族的另一个比喻,TrmFO样蛋白,具有与TrmFO和RlmFO同系物不同的尚未鉴定的功能。尽管已经进化到最小基因组,mole虫具有高度动态且经过水平转移的m5U修饰酶库。
    The C5-methylation of uracil to form 5-methyluracil (m5U) is a ubiquitous base modification of nucleic acids. Four enzyme families have converged to catalyze this methylation using different chemical solutions. Here, we investigate the evolution of 5-methyluracil synthase families in Mollicutes, a class of bacteria that has undergone extensive genome erosion. Many mollicutes have lost some of the m5U methyltransferases present in their common ancestor. Cases of duplication and subsequent shift of function are also described. For example, most members of the Spiroplasma subgroup use the ancestral tetrahydrofolate-dependent TrmFO enzyme to catalyze the formation of m5U54 in tRNA, while a TrmFO paralog (termed RlmFO) is responsible for m5U1939 formation in 23S rRNA. RlmFO has replaced the S-adenosyl-L-methionine (SAM)-enzyme RlmD that adds the same modification in the ancestor and which is still present in mollicutes from the Hominis subgroup. Another paralog of this family, the TrmFO-like protein, has a yet unidentified function that differs from the TrmFO and RlmFO homologs. Despite having evolved towards minimal genomes, the mollicutes possess a repertoire of m5U-modifying enzymes that is highly dynamic and has undergone horizontal transfer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号