Mitochondrial calcium

线粒体钙
  • 文章类型: Journal Article
    骨质减少和骨质疏松症是最常见的代谢性骨疾病之一,代表着主要的公共卫生问题。患者骨折风险增加。糖尿病是导致骨量减少和骨质疏松症的最常见疾病之一。然而,糖尿病引起的骨量减少和骨质疏松的潜在机制尚不清楚.骨重建,包括骨的形成和吸收,是一个动态的过程。大电导Ca2+-激活的K+通道(BK通道)调节骨髓间充质干细胞的功能,成骨细胞,和破骨细胞。我们先前的研究揭示了BK通道在生理条件下通过各种途径与成骨细胞功能之间的关系。在这项研究中,我们报道了糖尿病诱导的骨量减少小鼠中BK通道的表达下降。BK缺乏增强线粒体Ca2+和激活经典PINK1(PTEN诱导的推定激酶1)-PRKN/Parkin(parkinRBRE3泛素蛋白连接酶)依赖性线粒体自噬,而BK通道的上调抑制了成骨细胞的线粒体自噬。此外,SLC25A5/ANT2(溶质载体家族25(线粒体载体,腺嘌呤核苷酸转运蛋白),成员5),参与PINK1-PRKN依赖性线粒体自噬的关键线粒体内膜蛋白,也受BK通道调控。总的来说,这些数据确定了BK通道在调节成骨细胞线粒体自噬中的新作用,这可能是糖尿病引起的骨骼疾病的潜在目标。
    Osteopenia and osteoporosis are among the most common metabolic bone diseases and represent major public health problems, with sufferers having an increased fracture risk. Diabetes is one of the most common diseases contributing to osteopenia and osteoporosis. However, the mechanisms underlying diabetes-induced osteopenia and osteoporosis remain unclear. Bone reconstruction, including bone formation and absorption, is a dynamic process. Large-conductance Ca2+-activated K+ channels (BK channels) regulate the function of bone marrow-derived mesenchymal stem cells, osteoblasts, and osteoclasts. Our previous studies revealed the relationship between BK channels and the function of osteoblasts via various pathways under physiological conditions. In this study, we reported a decrease in the expression of BK channels in mice with diabetes-induced osteopenia. BK deficiency enhanced mitochondrial Ca2+ and activated classical PINK1 (PTEN induced putative kinase 1)-PRKN/Parkin (parkin RBR E3 ubiquitin protein ligase)-dependent mitophagy, whereas the upregulation of BK channels inhibited mitophagy in osteoblasts. Moreover, SLC25A5/ANT2 (solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 5), a critical inner mitochondrial membrane protein participating in PINK1-PRKN-dependent mitophagy, was also regulated by BK channels. Overall, these data identified a novel role of BK channels in regulating mitophagy in osteoblasts, which might be a potential target for diabetes-induced bone diseases.Abbreviations: AGE, advanced glycation end products; Baf A1, bafilomycin A1; BK channels, big-conductance Ca2+-activated K+ channels; BMSCs, bone marrow-derived mesenchymal stem cells; BSA, bovine serum albumin; FBG, fasting blood glucose; IMM, inner mitochondrial membrane; ITPR1, inositol 1,4,5-trisphosphate receptor 1; MAM, mitochondria-associated ER membrane; OMM, outer mitochondrial membrane; PINK1, PTEN induced putative kinase 1; PPID/CyP-D, peptidylprolyl isomerase D (cyclophilin D); PRKN/PARK2, parkin RBR E3 ubiquitin protein ligase; ROS, reactive oxygen species; SLC25A5/ANT2, solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator), member 5; STZ, streptozotocin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    全氟辛烷磺酸(PFOS),官方列出的持久性有机污染物,是一种广泛分布的全氟烷基物质。流行病学研究表明,全氟辛烷磺酸与胰岛素抵抗(IR)的发生密切相关。然而,详细的机制仍然模糊。在以往的研究中,我们发现线粒体钙超载与PFOS诱导的肝脏IR有关。在这项研究中,我们发现全氟辛烷磺酸暴露显著提高溶酶体钙在L-02肝细胞从0.5小时。在全氟辛烷磺酸培养的L-02细胞,抑制自噬减轻溶酶体钙超载。线粒体钙摄取的抑制加剧了溶酶体钙的积累,而抑制溶酶体钙的流出逆转了PFOS诱导的线粒体钙超载和IR。瞬时受体电位粘磷脂1(TRPML1),溶酶体的钙输出通道,与电压依赖性阴离子通道1(VDAC1)相互作用,线粒体的钙摄入通道,在全氟辛烷磺酸培养的细胞中。此外,我们发现ATP合酶F1亚基β(ATP5B)在全氟辛烷磺酸暴露下的L-02细胞和小鼠肝脏中与TRPML1和VDAC1相互作用.抑制ATP5B表达或抑制ATP5B在质膜上减少了TRPML1和VDAC1之间的相互作用,逆转了线粒体钙超载,并恶化了PFOS培养细胞中溶酶体钙的积累。我们的研究揭示了溶酶体和线粒体之间钙串扰的分子调控,并解释了在激活的自噬背景下全氟辛烷磺酸诱导的IR。
    Perfluorooctane sulfonate (PFOS), an officially listed persistent organic pollutant, is a widely distributed perfluoroalkyl substance. Epidemiological studies have shown that PFOS is intimately linked to the occurrence of insulin resistance (IR). However, the detailed mechanism remains obscure. In previous studies, we found that mitochondrial calcium overload was concerned with hepatic IR induced by PFOS. In this study, we found that PFOS exposure noticeably raised lysosomal calcium in L-02 hepatocytes from 0.5 h. In the PFOS-cultured L-02 cells, inhibiting autophagy alleviated lysosomal calcium overload. Inhibition of mitochondrial calcium uptake aggravated the accumulation of lysosomal calcium, while inhibition of lysosomal calcium outflowing reversed PFOS-induced mitochondrial calcium overload and IR. Transient receptor potential mucolipin 1 (TRPML1), the calcium output channel of lysosomes, interacted with voltage-dependent anion channel 1 (VDAC1), the calcium intake channel of mitochondria, in the PFOS-cultured cells. Moreover, we found that ATP synthase F1 subunit beta (ATP5B) interacted with TRPML1 and VDAC1 in the L-02 cells and the liver of mice under PFOS exposure. Inhibiting ATP5B expression or restraining the ATP5B on the plasma membrane reduced the interplay between TRPML1 and VDAC1, reversed the mitochondrial calcium overload and deteriorated the lysosomal calcium accumulation in the PFOS-cultured cells. Our research unveils the molecular regulation of the calcium crosstalk between lysosomes and mitochondria, and explains PFOS-induced IR in the context of activated autophagy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人们通过食品和个人护理产品接触高浓度的抗菌剂氯化十六烷基吡啶(CPC),尽管有关CPC对真核生物的影响的信息很少。这里,我们表明低微摩尔CPC暴露,不会导致细胞死亡,抑制原代人角质形成细胞中线粒体ATP的产生,小鼠NIH-3T3成纤维细胞,和大鼠RBL-2H3免疫肥大细胞。通过CPC(EC501.7μM)的ATP抑制几乎与经典有丝分裂毒素CCCP(EC501.2μM)引起的抑制一样有效。CPC对耗氧率(OCR)的抑制作用与ATP的抑制作用:由于RBL-2H3细胞中的1.75μMCPC和原代人角质形成细胞中的1.25μM,OCR减半。线粒体[Ca2+]改变可引起线粒体功能障碍。在这里,我们显示CPC通过ATP抑制机制导致线粒体Ca2+从肥大细胞流出。在活细胞中使用超分辨率显微镜(荧光光活化定位),我们发现CPC在60分钟内导致活细胞线粒体纳米结构缺陷,包括具有甜甜圈状横截面的球形结构的形成。这项工作揭示了CPC作为一种丝裂毒素,尽管它被广泛使用,强调进一步研究其毒理学安全性的重要性。
    People are exposed to high concentrations of antibacterial agent cetylpyridinium chloride (CPC) via food and personal care products, despite little published information regarding CPC effects on eukaryotes. Here, we show that low-micromolar CPC exposure, which does not cause cell death, inhibits mitochondrial ATP production in primary human keratinocytes, mouse NIH-3T3 fibroblasts, and rat RBL-2H3 immune mast cells. ATP inhibition via CPC (EC50 1.7 μM) is nearly as potent as that caused by canonical mitotoxicant CCCP (EC50 1.2 μM). CPC inhibition of oxygen consumption rate (OCR) tracks with that of ATP: OCR is halved due to 1.75 μM CPC in RBL-2H3 cells and 1.25 μM in primary human keratinocytes. Mitochondrial [Ca2+] changes can cause mitochondrial dysfunction. Here we show that CPC causes mitochondrial Ca2+ efflux from mast cells via an ATP-inhibition mechanism. Using super-resolution microscopy (fluorescence photoactivation localization) in live cells, we have discovered that CPC causes mitochondrial nanostructural defects in live cells within 60 min, including the formation of spherical structures with donut-like cross section. This work reveals CPC as a mitotoxicant despite widespread use, highlighting the importance of further research into its toxicological safety.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体钙(Ca2+)的摄取增加代谢过程和缓冲细胞溶质的Ca2+水平;然而,过量的线粒体Ca2+可引起细胞死亡。线粒体功能和Ca2+稳态与许多神经退行性疾病(ND)有关。但是线粒体Ca2+破坏的影响尚不清楚。这里,我们显示了多个ND的果蝇模型(帕金森氏症,亨廷顿,老年痴呆症,和额颞叶痴呆)显示神经元线粒体Ca2水平的持续增加,以及线粒体Ca2+缓冲能力降低,与线粒体-内质网接触位点(MERC)增加有关。重要的是,线粒体Ca2摄取通道MCU的丢失或外排通道NCLX的过表达强烈地抑制了这些ND模型中的关键病理表型。因此,线粒体Ca2+失衡是体内多种NDs的共同特征,是疾病发病机制的重要因素。在这些模型中,部分丢失MCU带来的广泛有益影响呈现了一个共同的,治疗干预的药物靶标。
    Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death. Disrupted mitochondrial function and Ca2+ homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondrial Ca2+ disruption is not well understood. Here, we show that Drosophila models of multiple NDs (Parkinson\'s, Huntington\'s, Alzheimer\'s, and frontotemporal dementia) reveal a consistent increase in neuronal mitochondrial Ca2+ levels, as well as reduced mitochondrial Ca2+ buffering capacity, associated with increased mitochondria-endoplasmic reticulum contact sites (MERCs). Importantly, loss of the mitochondrial Ca2+ uptake channel MCU or overexpression of the efflux channel NCLX robustly suppresses key pathological phenotypes across these ND models. Thus, mitochondrial Ca2+ imbalance is a common feature of diverse NDs in vivo and is an important contributor to the disease pathogenesis. The broad beneficial effects from partial loss of MCU across these models presents a common, druggable target for therapeutic intervention.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    平滑肌细胞在收缩和非收缩表型之间可逆地转换,以响应不同的影响,包括许多线粒体。许多分子包括myocardin,前收缩miRNA,和线粒体蛋白Prohibitin-2促进收缩分化;这与线粒体活性氧(mtROS)相反,高乳酸浓度,和线粒体自噬和/或线粒体裂变诱导的代谢重编程。血管病变如致癌转化的主要途径,肺动脉高压,而动脉粥样硬化引起血管收缩力的丧失是通过增强线粒体自噬和线粒体裂变而对平滑肌表型产生的。促增殖miRNA和线粒体转位酶TOMM40也减弱收缩分化。缺氧可以通过增强mtROS和乳酸的产生而同时抑制线粒体呼吸来引发收缩性的丧失。线粒体可以通过线粒体钙单质转运蛋白穿过线粒体内膜来减少胞质钙,然后通过线粒体相关膜进出钙储存在肌浆网/内质网中。通过这些对钙的影响,线粒体可以影响多种钙敏感核转录因子和基因,其中一些控制平滑肌表型,也可能产生基因组编码的线粒体蛋白和靶向线粒体的miRNAs(mitoMirs)。反过来,线粒体还可以通过线粒体逆行信号传导影响核转录和mRNA加工,这是目前一个深入调查的话题。线粒体还可以通过对外泌体含量的贡献向相邻细胞发出信号。考虑到这些和其他机制,越来越清楚的是,线粒体对平滑肌表型和分化的调节有重要作用。
    Smooth muscle cells transition reversibly between contractile and noncontractile phenotypes in response to diverse influences, including many from mitochondria. Numerous molecules including myocardin, procontractile miRNAs, and the mitochondrial protein prohibitin-2 promote contractile differentiation; this is opposed by mitochondrial reactive oxygen species (mtROS), high lactate concentrations, and metabolic reprogramming induced by mitophagy and/or mitochondrial fission. A major pathway through which vascular pathologies such as oncogenic transformation, pulmonary hypertension, and atherosclerosis cause loss of vascular contractility is by enhancing mitophagy and mitochondrial fission with secondary effects on smooth muscle phenotype. Proproliferative miRNAs and the mitochondrial translocase TOMM40 also attenuate contractile differentiation. Hypoxia can initiate loss of contractility by enhancing mtROS and lactate production while simultaneously depressing mitochondrial respiration. Mitochondria can reduce cytosolic calcium by moving it across the inner mitochondrial membrane via the mitochondrial calcium uniporter, and then through mitochondria-associated membranes to and from calcium stores in the sarcoplasmic/endoplasmic reticulum. Through these effects on calcium, mitochondria can influence multiple calcium-sensitive nuclear transcription factors and genes, some of which govern smooth muscle phenotype, and possibly also the production of genomically encoded mitochondrial proteins and miRNAs (mitoMirs) that target the mitochondria. In turn, mitochondria also can influence nuclear transcription and mRNA processing through mitochondrial retrograde signaling, which is currently a topic of intensive investigation. Mitochondria also can signal to adjacent cells by contributing to the content of exosomes. Considering these and other mechanisms, it is becoming increasingly clear that mitochondria contribute significantly to the regulation of smooth muscle phenotype and differentiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    锂通常被规定为各种心理健康状况的情绪稳定剂,然而,它的分子作用方式还没有完全理解。与锂相关的许多细胞事件似乎与线粒体功能有关。Further,最近的证据表明锂的生物活性是同位素特异性的。在这里,我们关注与线粒体钙处理相关的锂效应。锂可防止钙诱导的通透性转变,并在临床相关浓度下降低肝线粒体的钙容量。相比之下,锂增加了脑线粒体钙容量。令人惊讶的是,7Li对钙容量的作用比6Li强,然而6Li在延缓渗透率转变方面更有效。体外形成的无定形磷酸钙胶体的尺寸分布受到锂同位素的不同影响,为观察到的同位素对线粒体钙处理的特异性影响提供了机制基础。这项工作强调了需要更好地了解线粒体钙储存是如何在结构上受到调控的,并为锂基疗法的未来配方提供了关键考虑因素。
    Lithium is commonly prescribed as a mood stabilizer in a variety of mental health conditions, yet its molecular mode of action is incompletely understood. Many cellular events associated with lithium appear tied to mitochondrial function. Further, recent evidence suggests that lithium bioactivities are isotope specific. Here we focus on lithium effects related to mitochondrial calcium handling. Lithium protected against calcium-induced permeability transition and decreased the calcium capacity of liver mitochondria at a clinically relevant concentration. In contrast, brain mitochondrial calcium capacity was increased by lithium. Surprisingly, 7Li acted more potently than 6Li on calcium capacity, yet 6Li was more effective at delaying permeability transition. The size distribution of amorphous calcium phosphate colloids formed in vitro was differentially affected by lithium isotopes, providing a mechanistic basis for the observed isotope specific effects on mitochondrial calcium handling. This work highlights a need to better understand how mitochondrial calcium stores are structurally regulated and provides key considerations for future formulations of lithium-based therapeutics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    皮质类固醇介导的应激反应需要激活涉及线粒体活动的复杂脑回路,但是潜在的细胞和分子机制知之甚少。内源性大麻素系统与压力应对有关,它可以通过与线粒体膜(mtCB1)相关的1型大麻素(CB1)受体直接调节脑线粒体功能。在这项研究中,我们表明,皮质酮在小鼠新型物体识别(NOR)任务中的损害作用需要mtCB1受体和神经元线粒体钙水平的调节。通过这种机制调节不同的脑回路,以在任务的特定阶段介导皮质酮的影响。因此,而皮质酮在去甲肾上腺素能神经元中募集mtCB1受体来削弱NOR巩固,局部海马GABA能中间神经元中的mtCB1受体是抑制NOR恢复所必需的。这些数据揭示了在NOR的不同阶段介导皮质类固醇作用的不可预见的机制,涉及不同脑回路的线粒体钙改变。
    Corticosteroid-mediated stress responses require the activation of complex brain circuits involving mitochondrial activity, but the underlying cellular and molecular mechanisms are scantly known. The endocannabinoid system is implicated in stress coping, and it can directly regulate brain mitochondrial functions via type 1 cannabinoid (CB1) receptors associated with mitochondrial membranes (mtCB1). In this study, we show that the impairing effect of corticosterone in the novel object recognition (NOR) task in mice requires mtCB1 receptors and the regulation of mitochondrial calcium levels in neurons. Different brain circuits are modulated by this mechanism to mediate the impact of corticosterone during specific phases of the task. Thus, whereas corticosterone recruits mtCB1 receptors in noradrenergic neurons to impair NOR consolidation, mtCB1 receptors in local hippocampal GABAergic interneurons are required to inhibit NOR retrieval. These data reveal unforeseen mechanisms mediating the effects of corticosteroids during different phases of NOR, involving mitochondrial calcium alterations in different brain circuits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    创伤性脑损伤(TBI)是由于外力造成的脑损伤。轻度TBI(mTBI)是最常见的TBI形式,反复的mTBI是发生神经退行性疾病的危险因素。已经在皮质和海马中描述了神经元损伤的几种机制,包括线粒体功能障碍.然而,直到现在,目前还没有研究评估线粒体钙动力学.这里,我们使用分离的海马线粒体进行生化研究,在mTBI小鼠模型中评估线粒体钙动力学。我们观察到mTBI后24小时,线粒体膜电位降低,基础基质钙水平升高。这些发现伴随着线粒体钙外排的增加和线粒体钙摄取的变化。我们还观察到NCLX蛋白水平和钙保留能力的增加。我们的结果表明,在mTBI下,海马细胞通过增加NCLX水平来恢复线粒体功能。
    Traumatic brain injury (TBI) is brain damage due to external forces. Mild TBI (mTBI) is the most common form of TBI, and repeated mTBI is a risk factor for developing neurodegenerative diseases. Several mechanisms of neuronal damage have been described in the cortex and hippocampus, including mitochondrial dysfunction. However, up until now, there have been no studies evaluating mitochondrial calcium dynamics. Here, we evaluated mitochondrial calcium dynamics in an mTBI model in mice using isolated hippocampal mitochondria for biochemical studies. We observed that 24 h after mTBI, there is a decrease in mitochondrial membrane potential and an increase in basal matrix calcium levels. These findings are accompanied by increased mitochondrial calcium efflux and no changes in mitochondrial calcium uptake. We also observed an increase in NCLX protein levels and calcium retention capacity. Our results suggest that under mTBI, the hippocampal cells respond by incrementing NCLX levels to restore mitochondrial function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    许多关于Ca2+对完整细胞线粒体呼吸的影响的研究已经使用电和/或化学刺激来提高细胞内[Ca2+]。并报告了[NADH]的增加和ADP/ATP比率的增加,作为呼吸的主要控制者。这项研究测试了一种不同形式的刺激:由红外光脉冲(IR,1863nm,8-10oC为~5s)。应用于低µM细胞外[Ca2]的单个PC-12细胞的荧光成像技术显示,IR刺激诱导的胞浆(荧光5F)和线粒体(rhod2)[Ca2[。IR刺激增加O2消耗(卟啉荧光),并在线粒体基质pH(Snarf1)中产生碱性变化,指示电子传输链(ETC)的激活。寡霉素的O2消耗量持续增加,在NADH下降期间开始,表明ETC活性的最初增加不是由ATP合酶活性的增加或ETC复合物I的燃料供应增加所驱动的。用两种电位染料(TMRM和R123)成像表明,在高[K]介质中持续存在Δwm的去极化位移。高分辨率荧光成像披露大,被环孢菌素A(CSA)抑制的可逆线粒体去极化,与瞬时线粒体通透性过渡孔的开放一致。IR刺激还产生了不被CSA抑制的超氧化物产生(Mitosox)的Ca2依赖性增加,表明超氧化物的增加不需要过渡孔开放。因此,红外光脉冲后的细胞内Ca2释放为控制完整细胞中的呼吸和活性氧的Ca2依赖性过程提供了新的见解。
    Many studies of Ca2+ effects on mitochondrial respiration in intact cells have used electrical and/or chemical stimulation to elevate intracellular [Ca2+], and have reported increases in [NADH] and increased ADP/ATP ratios as dominant controllers of respiration. This study tested a different form of stimulation: brief temperature increases produced by pulses of infrared light (IR, 1,863 nm, 8-10°C for ∼5 s). Fluorescence imaging techniques applied to single PC-12 cells in low µM extracellular [Ca2+] revealed IR stimulation-induced increases in both cytosolic (fluo5F) and mitochondrial (rhod2) [Ca2+]. IR stimulation increased O2 consumption (porphyrin fluorescence), and produced an alkaline shift in mitochondrial matrix pH (Snarf1), indicating activation of the electron transport chain (ETC). The increase in O2 consumption persisted in oligomycin, and began during a decrease in NADH, suggesting that the initial increase in ETC activity was not driven by increased ATP synthase activity or an increased fuel supply to ETC complex I. Imaging with two potentiometric dyes [tetramethyl rhodamine methyl ester (TMRM) and R123] indicated a depolarizing shift in ΔΨm that persisted in high [K+] medium. High-resolution fluorescence imaging disclosed large, reversible mitochondrial depolarizations that were inhibited by cyclosporin A (CSA), consistent with the opening of transient mitochondrial permeability transition pores. IR stimulation also produced a Ca2+-dependent increase in superoxide production (MitoSox) that was not inhibited by CSA, indicating that the increase in superoxide did not require transition pore opening. Thus, the intracellular Ca2+ release that follows pulses of infrared light offers new insights into Ca2+-dependent processes controlling respiration and reactive oxygen species in intact cells.NEW & NOTEWORTHY Pulses of infrared light (IR) provide a novel method for rapidly transferring Ca2+ from the endoplasmic reticulum to mitochondria in intact cells. In PC12 cells the resulting ETC activation was not driven by increased ATP synthase activity or NADH. IR stimulation produced a Ca2+-dependent, reversible depolarization of ΔΨm that was partially blocked by cyclosporin A, and a Ca2+-dependent increase in superoxide that did not require transition pore opening.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    与神经变性相关的脑损伤的复杂病因在上个世纪引发了许多研究。这些临床情况是无法治愈的,而目前可用的疗法仅对症状起作用或减缓疾病的进程。正在寻求有效的方法来改变这种疾病,直接作用于正确研究的目标,以及有助于制定有效的治疗策略,开启了重新专注于药物开发以进行疾病管理的可能性。在这个意义上,这篇综述讨论了神经元中Ca2+错误通信诱导的线粒体功能障碍的现有证据,以及如何在神经元损伤的治疗中使用靶向磷酸化事件来调节蛋白磷酸酶2A(PP2A)的活性。Ca2+往往是线粒体功能障碍的催化剂,导致脑损伤中的突触缺乏。此外,新的数据表明,PP2A激活药物(PAD)通过抑制不同的信号通路来抑制炎症反应,表明PAD可能对神经元损伤的管理有益。此外,一些生物活性化合物也触发了PP2A靶向药物的激活,临床研究将有助于这些化合物的鉴定。如果PAD的安全性被证明是令人满意的,有理由尽快开始神经系统疾病的临床研究。
    The complex etiopathogenesis of brain injury associated with neurodegeneration has sparked a lot of studies in the last century. These clinical situations are incurable, and the currently available therapies merely act on symptoms or slow down the course of the diseases. Effective methods are being sought with an intent to modify the disease, directly acting on the properly studied targets, as well as to contribute to the development of effective therapeutic strategies, opening the possibility of refocusing on drug development for disease management. In this sense, this review discusses the available evidence for mitochondrial dysfunction induced by Ca2+ miscommunication in neurons, as well as how targeting phosphorylation events may be used to modulate protein phosphatase 2A (PP2A) activity in the treatment of neuronal damage. Ca2+ tends to be the catalyst for mitochondrial dysfunction, contributing to the synaptic deficiency seen in brain injury. Additionally, emerging data have shown that PP2A-activating drugs (PADs) suppress inflammatory responses by inhibiting different signaling pathways, indicating that PADs may be beneficial for the management of neuronal damage. In addition, a few bioactive compounds have also triggered the activation of PP2A-targeted drugs for this treatment, and clinical studies will help in the authentication of these compounds. If the safety profiles of PADs are proven to be satisfactory, there is a case to be made for starting clinical studies in the setting of neurological diseases as quickly as possible.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号