Microtubule motor proteins

微管运动蛋白
  • 文章类型: Journal Article
    细胞质动力蛋白,最大和最复杂的细胞骨架运动蛋白,为许多细胞内货物向微管(MT)的负端移动提供动力。尽管它在真核细胞中起着重要作用,动力蛋白的分子机制,其亚基和辅助蛋白的调节功能,人类疾病突变对动力蛋白力产生的影响仍不清楚。最近的工作结合诱变,单分子荧光,和基于光学镊子的力测量为动力蛋白的多个AAAATPase结构域如何调节动力蛋白对MT的附着提供了有价值的见解。这里,我们描述了力依赖性动力蛋白-MT脱离率测量的详细方案.我们为尾部截短的单头酿酒酵母动力蛋白的表达和纯化提供了更新和优化的方案,对于极性标记的MT聚合,以及将MT非共价连接到覆盖玻璃表面,以测量动力蛋白-MT分离力。
    Cytoplasmic dynein, the largest and most intricate cytoskeletal motor protein, powers the movement of numerous intracellular cargos toward the minus ends of microtubules (MT). Despite its essential roles in eukaryotic cells, dynein\'s molecular mechanism, the regulatory functions of its subunits and accessory proteins, and the consequences of human disease mutations on dynein force generation remain largely unclear. Recent work combining mutagenesis, single-molecule fluorescence, and optical tweezers-based force measurement have provided valuable insights into how dynein\'s multiple AAA+ ATPase domains regulate dynein\'s attachment to MTs. Here, we describe detailed protocols for the measurements of the force-dependent dynein-MT detachment rates. We provide updated and optimized protocols for the expression and purification of a tail-truncated single-headed Saccharomyces cerevisiae dynein, for polarity-marked MT polymerization, and for the non-covalent attachment of MTs to cover glass surfaces for the measurement of dynein-MT detachment forces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    中心螺旋体有许多放射状轴足,每个包含轴突微管。响应于机械刺激,轴足以接近视频速率(每秒30帧)显示出快速收缩。轴收缩伴随着细胞骨架微管解聚,但是这种现象的分子机制尚未阐明。在这项研究中,我们对收缩性弧菌进行了从头转录组测序,以鉴定与微管动力学有关的基因,如快速轴收缩。转录组测序总共产生了7.15Gbp的干净读数,组装成31,771个unigenes。使用获得的基因集,我们确定了几种可能参与快速轴突收缩的微管切断蛋白,和在基因复制中发生的驱动蛋白样基因。另一方面,一些参与鞭毛形成和运动的微管运动蛋白的基因在收缩R.这表明收缩性弧菌的基因库反映了无鞭毛原生生物的形态特征。我们的转录组分析为分析收缩性R.的微管动力学的分子机制提供了基本信息。
    The centrohelid heliozoan Raphidocystis contractilis has many radiating axopodia, each containing axopodial microtubules. The axopodia show rapid contraction at nearly a video rate (30 frames per second) in response to mechanical stimuli. The axopodial contraction is accompanied by cytoskeletal microtubule depolymerization, but the molecular mechanism of this phenomenon has not been elucidated. In this study, we performed de novo transcriptome sequencing of R. contractilis to identify genes involved in microtubule dynamics such as the rapid axopodial contraction. The transcriptome sequencing generated 7.15-Gbp clean reads in total, which were assembled as 31,771 unigenes. Using the obtained gene sets, we identified several microtubule-severing proteins which might be involved in the rapid axopodial contraction, and kinesin-like genes that occur in gene duplication. On the other hand, some genes for microtubule motor proteins involved in the formation and motility of flagella were not found in R. contractilis, suggesting that the gene repertoire of R. contractilis reflected the morphological features of nonflagellated protists. Our transcriptome analysis provides basic information for the analysis of the molecular mechanism underlying microtubule dynamics in R. contractilis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞器的细胞内主动运输依赖于细胞质动力蛋白和驱动蛋白的协调活动,ATP依赖性微管运动蛋白。虽然轴突动力蛋白是在1960年代中期发现的,直到20世纪80年代中期,RonVale和同事们才发现了驱动蛋白,1985年的报道。他们的研究表明,新发现的蛋白质,从鱿鱼细胞质和牛脑中分离,独立地能够驱动微管滑动或细胞器运动。这些发现开启了生理学和神经科学领域的快速进展,导致确定了扩展驱动蛋白超家族的许多成员,以及对其生物物理特性的详细探索,细胞作用机制,以及在疾病中的作用。
    Active intracellular transport of organelles relies on the coordinated activities of cytoplasmic dynein and kinesin, ATP-dependent microtubule motor proteins. While axonemal dynein was discovered during the mid-1960s, it was not until the mid-1980s that kinesin was discovered by Ron Vale and colleagues, as reported in 1985. Their research demonstrated that the newly identified protein, isolated from both squid axoplasm and bovine brain, was independently capable of driving microtubule gliding or organelle movement. These findings kicked off rapid progress in the fields of physiology and neuroscience, leading to the identification of the many members of the extended kinesin superfamily, as well as detailed explorations of their biophysical properties, cellular mechanisms of action, and roles in disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    细胞质动力蛋白是最大和最复杂的细胞骨架运动蛋白。它负责各种各样的生物学功能,从细胞器和mRNA的运输到神经元迁移过程中细胞核的运动以及细胞分裂过程中有丝分裂纺锤体的形成和定位。尽管它的巨型尺寸和复杂的设计,最近成功的重组表达动力蛋白重链,通过结合结构功能和单分子研究,促进了我们对动力蛋白分子机制的理解。单分子荧光测定法提供了详细的见解,了解动力蛋白在没有负载的情况下如何沿着其微管轨道前进,而光学镊子已经对动力蛋白的力产生和失速行为产生了见解。这里,使用酿酒酵母表达系统,我们提供了用于产生动力蛋白突变体以及用于表达和纯化突变和/或标记的蛋白质的改进方案。为了促进单分子荧光和光学捕获测定,我们进一步描述更新,易于使用的协议,用于将微管附着到盖玻片表面。提出的方案以及最近解决的动力蛋白运动结构域的晶体结构将进一步简化和加速假设驱动的诱变和动力蛋白的结构功能研究。
    Cytoplasmic dynein is the largest and most intricate cytoskeletal motor protein. It is responsible for a vast array of biological functions, ranging from the transport of organelles and mRNAs to the movement of nuclei during neuronal migration and the formation and positioning of the mitotic spindle during cell division. Despite its megadalton size and its complex design, recent success with the recombinant expression of the dynein heavy chain has advanced our understanding of dynein\'s molecular mechanism through the combination of structure-function and single-molecule studies. Single-molecule fluorescence assays have provided detailed insights into how dynein advances along its microtubule track in the absence of load, while optical tweezers have yielded insights into the force generation and stalling behavior of dynein. Here, using the S. cerevisiae expression system, we provide improved protocols for the generation of dynein mutants and for the expression and purification of the mutated and/or tagged proteins. To facilitate single-molecule fluorescence and optical trapping assays, we further describe updated, easy-to-use protocols for attaching microtubules to coverslip surfaces. The presented protocols together with the recently solved crystal structures of the dynein motor domain will further simplify and accelerate hypothesis-driven mutagenesis and structure-function studies on dynein.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号