Microtomy

显微切除术
  • 文章类型: Journal Article
    像其他体积电子显微镜方法一样,自动胶带收集超薄切除术(ATUM)可以通过扫描电子显微镜(SEM)对沉积在厚塑料胶带上的连续切片进行成像。ATUM在实现分层成像方面是独一无二的,因此可以有效筛选目标结构,根据相关的光学和电子显微镜的需要。然而,胶带上切片的SEM只能进入切片表面,从而将轴向分辨率限制为细胞囊泡的典型大小,其数量级低于获得的xy分辨率。相比之下,串联截面电子层析成像(ET),基于透射电子显微镜的方法,在全EM分辨率下产生各向同性体素,但是需要在电子稳定的薄膜和易碎的薄膜上沉积部分,从而使大切片库的筛选变得困难并且容易出现切片丢失。为了结合这两种方法的力量,我们开发了ATUM-Tomo,一种混合方法,首先通过可溶性涂层将部分可逆地附着到塑料胶带上,筛选后分离并转移到与ET相容的薄膜上。作为一个原则证明,我们应用相关的ATUM-Tomo研究了创伤性脑损伤小鼠模型中微血栓周围血脑屏障(BBB)渗漏的超微结构特征。通过注射的荧光和电子致密纳米颗粒的共聚焦成像来鉴定BBB渗漏的微血栓和相关部位。然后通过ATUM-SEM重新定位,最后被相关的ATUM-Tomo审问.总的来说,我们新的ATUM-Tomo方法将大大推进生物学现象的超微结构分析,这些生物学现象需要细胞和组织水平的环境化。
    Like other volume electron microscopy approaches, automated tape-collecting ultramicrotomy (ATUM) enables imaging of serial sections deposited on thick plastic tapes by scanning electron microscopy (SEM). ATUM is unique in enabling hierarchical imaging and thus efficient screening for target structures, as needed for correlative light and electron microscopy. However, SEM of sections on tape can only access the section surface, thereby limiting the axial resolution to the typical size of cellular vesicles with an order of magnitude lower than the acquired xy resolution. In contrast, serial-section electron tomography (ET), a transmission electron microscopy-based approach, yields isotropic voxels at full EM resolution, but requires deposition of sections on electron-stable thin and fragile films, thus making screening of large section libraries difficult and prone to section loss. To combine the strength of both approaches, we developed \'ATUM-Tomo, a hybrid method, where sections are first reversibly attached to plastic tape via a dissolvable coating, and after screening detached and transferred to the ET-compatible thin films. As a proof-of-principle, we applied correlative ATUM-Tomo to study ultrastructural features of blood-brain barrier (BBB) leakiness around microthrombi in a mouse model of traumatic brain injury. Microthrombi and associated sites of BBB leakiness were identified by confocal imaging of injected fluorescent and electron-dense nanoparticles, then relocalized by ATUM-SEM, and finally interrogated by correlative ATUM-Tomo. Overall, our new ATUM-Tomo approach will substantially advance ultrastructural analysis of biological phenomena that require cell- and tissue-level contextualization of the finest subcellular textures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    成像技术通过实现生物结构和过程的可视化,在推进生物研究中发挥了关键作用。虽然传统的电子显微镜(EM)产生二维图像,新兴技术现在允许高分辨率三维(3D)原位表征标本,满足分子和细胞生物学日益增长的需求。将透射电子显微镜(TEM)与连续切片首次3D成像相结合,吸引生物学家寻求探索细胞超微结构和推动3DEM重建的进步。通过全面准确地呈现内部结构和分布,3DTEM重建为细胞和分子提供了无与伦比的超微结构见解,对阐明结构-功能关系和广泛推进结构生物学具有巨大价值。这里,我们首先介绍了通过TEM中的经典方法对细胞和组织进行3D重建的原理,然后讨论了利用TEM和基于SEM的新型技术以及低温电子显微镜(cryo-EM)技术的现代技术。来自串行截面的三维重建技术,电子层析成像(ET),和最近的单粒子分析(SPA)进行了检查;聚焦离子束扫描电子显微镜(FIB-SEM),串行块面扫描电子显微镜(SBF-SEM),讨论了用于大体积三维重建的自动胶带收集车床超薄切片机(ATUM-SEM)。最后,我们回顾了这些技术在生命科学中的挑战和发展前景。旨在为生物研究者提供参考。
    Imaging technologies have played a pivotal role in advancing biological research by enabling visualization of biological structures and processes. While traditional electron microscopy (EM) produces two-dimensional images, emerging techniques now allow high-resolution three-dimensional (3D) characterization of specimens in situ, meeting growing needs in molecular and cellular biology. Combining transmission electron microscopy (TEM) with serial sectioning inaugurated 3D imaging, attracting biologists seeking to explore cell ultrastructure and driving advancement of 3D EM reconstruction. By comprehensively and precisely rendering internal structure and distribution, 3D TEM reconstruction provides unparalleled ultrastructural insights into cells and molecules, holding tremendous value for elucidating structure-function relationships and broadly propelling structural biology. Here, we first introduce the principle of 3D reconstruction of cells and tissues by classical approaches in TEM and then discuss modern technologies utilizing TEM and on new SEM-based as well as cryo-electron microscope (cryo-EM) techniques. 3D reconstruction techniques from serial sections, electron tomography (ET), and the recent single-particle analysis (SPA) are examined; the focused ion beam scanning electron microscopy (FIB-SEM), the serial block-face scanning electron microscopy (SBF-SEM), and automatic tape-collecting lathe ultramicrotome (ATUM-SEM) for 3D reconstruction of large volumes are discussed. Finally, we review the challenges and development prospects of these technologies in life science. It aims to provide an informative reference for biological researchers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: English Abstract
    BACKGROUND: Several factors in glass slide (GS) preparation affect the quality and data volume of a digitized histological slide. In particular, reducing contamination and selecting the appropriate coverslip have the potential to significantly reduce scan time and data volume.
    OBJECTIVE: To objectify observations from our institute\'s digitization process to determine the impact of laboratory processes on the quality of digital histology slides.
    METHODS: Experiment 1: Scanning the GS before and after installation of a central console in the microtomy area to reduce dirt and statistical analysis of the determined parameters. Experiment 2: Re-coverslipping the GS (post diagnostics) with glass and film. Scanning the GS and statistical analysis of the collected parameters.
    CONCLUSIONS: The targeted restructuring in the laboratory process leads to a reduction of GS contamination. This causes a significant reduction in the amount of data generated and scanning time required for the digitized sections. Film as a coverslip material minimizes processing errors in contrast to glass. According to our estimation, all the above-mentioned points lead to considerable cost savings.
    UNASSIGNED: HINTERGRUND: Viele Faktoren der Objektträger(OT)-Herstellung haben Einfluss auf Qualität und Datenmenge eines digitalisierten histologischen Schnittpräparates. Insbesondere die Reduktion von Verunreinigung sowie Auswahl des geeigneten Eindeckmaterials haben das Potenzial, Scanzeit und Datenmenge zu reduzieren.
    UNASSIGNED: Das Ziel dieser Arbeit ist die Objektivierung von Beobachtungen aus dem Prozess der Digitalisierung unseres Institutes, um den Einfluss von Laborprozessen auf die Qualität digitaler Histologiepräparate zu ermitteln.
    METHODS: Versuch 1: Einscannen von OT vor und nach Installation einer Mittelkonsole im Mikrotomiebereich zur Reduktion von Schmutz und statistische Auswertung der erhobenen Parameter. Versuch 2: Erneutes eindecken von OT (nach Abschluss der Diagnostik) mit Glas und Folie. Einscannen der OT und statistische Auswertung der erhobenen Parameter.
    UNASSIGNED: Die gezielte Umstrukturierung im Laborprozess führt zu einer Reduktion von OT-Kontaminationen. Dies bewirkt eine signifikante Reduktion der Datenmenge und Scanzeit von digitalisierten Schnitten. Folie als Eindeckmaterial verursacht im Gegensatz zu Glas weniger Prozessfehler im weiteren Verlauf. Nach unseren Schätzungen führt dies zu deutlichen Kosteneinsparungen.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于其固有的结构脆弱性,肺被认为是较难处理显微读数的组织之一。要为剖分添加结构支撑,肺组织片通常包埋在石蜡或OCT化合物中,并用切片机或低温恒温器切割,分别。一种更近的技术,被称为精确切割的肺切片,通过琼脂糖浸润增加了对新鲜肺组织的结构支持,并提供了一个平台来维持培养中的原代肺组织。然而,由于表位掩蔽和组织变形,这些技术中没有一项能够充分地用于开发可重复的高级光成像读数,这些读数在多种抗体和物种之间是兼容的.为此,我们开发了一个组织处理管道,利用琼脂糖包埋固定的肺组织,耦合到自动振动切片机切片。这促进了从200微米到70微米厚的肺切片的产生,在老鼠身上,猪,和人类的肺,不需要抗原修复,并代表天然分离组织的最少“处理”版本。使用这些切片,我们揭示了能够产生高分辨率图像的多重成像读出,其空间蛋白质表达可用于量化和更好地理解肺损伤和再生的潜在机制。
    Due to its inherent structural fragility, the lung is regarded as one of the more difficult tissues to process for microscopic readouts. To add structural support for sectioning, pieces of lung tissue are commonly embedded in paraffin or OCT compound and cut with a microtome or cryostat, respectively. A more recent technique, known as precision-cut lung slices, adds structural support to fresh lung tissue through agarose infiltration and provides a platform to maintain primary lung tissue in culture. However, due to epitope masking and tissue distortion, none of these techniques adequately lend themselves to the development of reproducible advanced light imaging readouts that would be compatible across multiple antibodies and species. To this end, we have developed a tissue-processing pipeline, which utilizes agarose embedding of fixed lung tissue, coupled to automated vibratome sectioning. This facilitated the generation of lung sections from 200 µm to 70 µm thick, in mouse, pig, and human lungs, which require no antigen retrieval, and represent the least \"processed\" version of the native isolated tissue. Using these slices, we reveal a multiplex imaging readout capable of generating high-resolution images whose spatial protein expression can be used to quantify and better understand the mechanisms underlying lung injury and regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    病理组织学检查涉及处理根据规定切割并放置在盒中的各种标本。然后在处理后诊断盒中的组织碎片,嵌入,薄切片,使用加工机器进行染色和其他程序。在这些过程中保持组织碎片的顺序和方向对于准确诊断很重要。在这项研究中,我们提出了一种使用超高强度琼脂薄膜维持组织碎片顺序和方向的方法,并评估其在组织切片过程中的有效性。准备好了盒子,每个都有三片猪肝,并比较了有和没有琼脂薄膜(ATF)的包埋时间。嵌入由三位具有不同经验水平的医学实验室科学家进行。要启用一步组织样本包埋,将ATF与盒中的样品整合。与传统的嵌入方法相比,每个盒子的嵌入时间平均减少了6.22s。通过使用ATF,保持组织碎片的顺序和方向,和嵌入过程的时间缩短。此外,ATFs很容易制备和储存在10%中性缓冲福尔马林中,允许在切片期间立即使用。这种方法是在繁忙的病理实验室中实施的理想选择。
    Pathological histology examination involves handling a variety of specimens that are cut according to regulations and placed in cassettes. Tissue fragments in the cassettes are then diagnosed after processing, embedding, thin sectioning, staining and other procedures using a processing machine. Maintaining tissue fragment order and orientation during these processes is important for accurate diagnosis. In this study, we present a method of maintaining tissue fragment order and orientation using a thin film of ultra-high-strength agar and evaluate its usefulness during tissue sectioning.Cassettes were prepared, each containing three pieces of porcine liver, and compared embedding time with and without agar thin films (ATFs). Embedding was performed by three medical laboratory scientists with different levels of experience.To enable one-step tissue sample embedding, ATFs were integrated with samples in the cassettes. This resulted in an average reduction of 6.22 s of embedding time per cassette compared with traditional embedding methods.Through the use of ATFs, tissue fragment order and orientation is maintained, and embedding process time shortened. Additionally, ATFs are easily prepared and stored in 10% neutral buffered formalin over extended periods, allowing for immediate use during sectioning. This method is ideal to implement in busy pathology laboratories.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这里,我们提出了拟南芥组织中分子的免疫标记方案。我们描述了组织固定和包埋在切片机衍生切片的树脂中的步骤,使用荧光和非荧光二级抗体进行免疫标记,以及细胞分裂素和生长素分子的可视化。该协议适用于研究生殖结构,如花序,鲜花,水果,和组织培养来源的样品。该方案可用于研究包括激素和细胞壁成分在内的各种分子的分布。有关此协议的使用和执行的完整详细信息,请参考Herrera-Ubaldo等人。(2019).1。
    Here, we present a protocol for immunolabeling of molecules in Arabidopsis tissues. We describe steps for tissue fixation and embedding in resin of microtome-derived sections, immunolabeling using fluorescent and non-fluorescent secondary antibodies, and visualization of cytokinin and auxin molecules. This protocol is suitable to study reproductive structures such as inflorescences, flowers, fruits, and tissue-culture-derived samples. This protocol is useful for studying the distribution of a wide range of molecules including hormones and cell wall components. For complete details on the use and execution of this protocol, please refer to Herrera-Ubaldo et al. (2019).1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNA原位杂交为研究候选基因的空间表达提供了一种手段,薄组织切片上标记的RNA探针。与其他方法不同,如启动子GUS融合,所有调控序列都应该是可用的,并且必须产生转基因植物,RNA原位杂交允许以细胞分辨率特异性和直接检测甚至低丰度的转录本。尽管存在各种协议,在整个文献中发表的结果表明,该技术存在一个非常明显的问题:每个步骤都有可能影响结果,也就是说,信号强度,背景的存在与否,和单个细胞的可见性。这里描述的方案试图通过详细解决每个步骤并提供有关关键步骤的建议来避免所有这些问题,以便在没有任何背景的完整组织切片上进行基因表达的不同可视化。
    RNA in situ hybridization offers a means to study the spatial expression of candidate genes by making use of specific, labelled RNA probes on thin tissue sections. Unlike other methods, such as promoter GUS fusions, for which all regulatory sequences should be available and transgenic plants have to be generated, RNA in situ hybridization allows specific and direct detection of even low abundant transcripts at cellular resolution. Although various protocols exist, the results published throughout the literature indicate a very obvious problem of the technique: each step has the potential to affect the outcome, that is, the signal strength, presence or absence of background, and visibility of individual cells. The protocol described here tries to avoid all these problems by addressing each step in detail and providing advice regarding critical steps for a distinct visualization of gene expression on intact tissue sections without any background.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    被统称为体积电子显微镜(vEM)的技术都有自己的优势和挑战,使它们或多或少适合任何特定项目。SEM阵列层析成像(SEM-AT)在这方面当然没有区别。需要显微切割技能,成像后涉及更多的数据对齐,SEM-AT向其用户提出了挑战,然而,也许是最灵活的,对常规EM设施采用具有成本效益和潜在可访问的VEM方法,由于其固有的非破坏性性质,它使那些具有多种优势的相同用户受益。这里描述了SEM-AT的一般原理和优点/缺点,以及工作流程的分步指南,从块修剪,在盖玻片上切片和收集,对齐高分辨率3D数据集。使用合适的SEM/背散射电子探测器设置,在电子显微镜实验室很容易找到的设备,应该可以开始获取3D超微结构数据。加上适当的SEM-AT成像软件,此过程可以显着增强,以自动成像数百个,可能有数千人,的部分。硬件和软件的进步以及未来的改进只会使这变得更容易,在某种程度上,SEM-AT可以成为全世界的常规vEM技术,而不是少数专家在有限的专业设施中享有特权。
    The techniques collectively known as volume electron microscopy (vEM) each come with their own advantages and challenges, making them more or less suitable for any specific project. SEM array tomography (SEM-AT) is certainly no different in this respect. Requiring microtomy skills, and involving more data alignment post imaging, SEM-AT presents challenges to its users, nevertheless, as perhaps the most flexible, cost effective and potentially accessible vEM approach to regular EM facilities, it benefits those same users with multiple advantages due to its inherently non-destructive nature. The general principles and advantages/disadvantages of SEM-AT are described here, together with a step-by-step guide to the workflow, from block trimming, sectioning and collection on coverslips, to alignment of the high-resolution 3D dataset. With a suitable SEM/backscatter electron detector setup, and equipment readily found in an electron microscopy lab, it should be possible to begin to acquire 3D ultrastructural data. With the addition of appropriate SEM-AT imaging software, this process can be significantly enhanced to automatically image hundreds, potentially thousands, of sections. Hardware and software advances and future improvements will only make this easier, to the extent that SEM-AT could become a routine vEM technique throughout the world, rather than the privilege of a small number of experts in limited specialist facilities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    在这一章中,我们回顾了自动胶带收集超薄切除术(ATUM),which,在其他阵列层析成像方法中,大大简化了大规模体积电子显微镜(VEM)项目。vEM在三维中以纳米分辨率揭示生物结构,并解决二维表示的歧义。然而,由于神经病理学中出现的兴趣样疾病标志的结构通常很少见,但视野很小,这可以很容易地将vEM项目变成大海捞针。一种解决方案是相关的光学和电子显微镜(CLEM),提供组织上下文,在切换到目标vEM以磨练对象的超微结构之前,动态和分子特征。这需要两个成像模态之间的精确坐标传递(例如,通过显微计算机断层扫描),特别是对于依赖于截面物理破坏的块面vEM。用阵列层析成像方法,将连续的超薄切片收集到组织库中,因此,可以像人体活检一样存储珍贵的样品,并能够在基于SEM的搜索策略中以不同的分辨率水平进行重复成像。为此,ATUM已开发用于通过传送带将串行超薄部分可靠地收集到塑料带上,然后将其安装到硅片上进行串行扫描EM(SEM)。ATUM-SEM程序是高度模块化的,可以分为样品制备,连续超薄切除术在胶带上,安装,串行图像采集-之后所采集的图像堆栈可用于分析。这里,我们描述了该工作流程的步骤以及ATUM-SEM如何实现特定结构的靶向和高分辨率成像。ATUM-SEM应用广泛。为了说明这一点,我们通过在阿尔茨海默氏症小鼠模型中重建局灶性病理学和特定皮质突触的CLEM来举例说明该方法。
    In this chapter, we review Automated Tape Collecting Ultramicrotomy (ATUM), which, among other array tomography methods, substantially simplified large-scale volume electron microscopy (vEM) projects. vEM reveals biological structures at nanometer resolution in three dimensions and resolves ambiguities of two-dimensional representations. However, as the structures of interest-like disease hallmarks emerging from neuropathology-are often rare but the field of view is small, this can easily turn a vEM project into a needle in a haystack problem. One solution for this is correlated light and electron microscopy (CLEM), providing tissue context, dynamic and molecular features before switching to targeted vEM to hone in on the object\'s ultrastructure. This requires precise coordinate transfer between the two imaging modalities (e.g., by micro computed tomography), especially for block face vEM which relies on physical destruction of sections. With array tomography methods, serial ultrathin sections are collected into a tissue library, thus allowing storage of precious samples like human biopsies and enabling repetitive imaging at different resolution levels for an SEM-based search strategy. For this, ATUM has been developed to reliably collect serial ultrathin sections via a conveyor belt onto a plastic tape that is later mounted onto silicon wafers for serial scanning EM (SEM). The ATUM-SEM procedure is highly modular and can be divided into sample preparation, serial ultramicrotomy onto tape, mounting, serial image acquisition-after which the acquired image stacks can be used for analysis. Here, we describe the steps of this workflow and how ATUM-SEM enables targeting and high resolution imaging of specific structures. ATUM-SEM is widely applicable. To illustrate this, we exemplify the approach by reconstructions of focal pathology in an Alzheimer mouse model and CLEM of a specific cortical synapse.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    间质纤维化的特征是各种器官的间质空间内细胞外基质(ECM)成分的沉积增加,比如肾脏,心,肺,肝脏,和皮肤。间质纤维化相关瘢痕形成的主要成分是间质胶原。因此,抗纤维化药物的治疗应用取决于组织样本中间质胶原水平的精确测量。目前用于间质胶原的组织学测量技术本质上通常是半定量的,并且仅提供组织内胶原水平的比率。然而,Genesis™200成像系统和补充图像分析软件,FibroIndex™,来自HistoIndex™,是一部小说,用于成像和表征间质胶原沉积以及器官内胶原结构的相关地形特性的自动化平台,在没有任何染色的情况下。这是通过使用称为二次谐波产生(SHG)的光的特性来实现的。使用严格的优化协议,组织切片中的胶原结构可以高度再现性成像,并确保所有样品的均匀性,同时最大限度地减少任何成像伪影或光漂白(由于长时间暴露于激光而降低的组织荧光)的引入。本章概述了为优化组织切片的HistoIndex扫描应采取的方案,以及可以使用FibroIndex™软件测量和分析的输出。
    Interstitial fibrosis is characterized by the increased deposition of extracellular matrix (ECM) components within the interstitial space of various organs, such as the kidneys, heart, lungs, liver, and skin. The primary component of interstitial fibrosis-related scarring is interstitial collagen. Therefore, the therapeutic application of anti-fibrotic medication hinges on the accurate measurement of interstitial collagen levels within tissue samples. Current histological measurement techniques for interstitial collagen are generally semi-quantitative in nature and only provide a ratio of collagen levels within tissues. However, the Genesis™ 200 imaging system and supplemental image analysis software, FibroIndex™, from HistoIndex™, is a novel, automated platform for imaging and characterizing interstitial collagen deposition and related topographical properties of the collagen structures within an organ, in the absence of any staining. This is achieved by using a property of light known as second harmonic generation (SHG). Using a rigorous optimization protocol, collagen structures in tissue sections can be imaged with a high degree of reproducibility and ensures homogeneity across all samples while minimizing the introduction of any imaging artefacts or photobleaching (decreased tissue fluorescence due to prolonged exposure to the laser). This chapter outlines the protocol that should be undertaken to optimize HistoIndex scanning of tissue sections, and the outputs that can be measured and analyzed using the FibroIndex™ software.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号