Microphthalmia associated transcription factor

小眼症相关转录因子
  • 文章类型: Journal Article
    靶向细胞蛋白的肽的设计和选择是具有挑战性的,并且通常产生具有不期望的性质的候选物。因此,我们基于大肠杆菌的双精氨酸转位酶(TAT)途径部署了一种新的选择系统,名为搭便车者易位(HiT)选择。设计并选择了α-螺旋编码序列库,以干扰黑色素瘤相关的碱性-螺旋-环-螺旋-亮氨酸-拉链(bHLHLZ)蛋白的卷曲螺旋结构域(CC),小眼症相关转录因子(MITF)。一个优势序列(iM10)在选择过程中被富集,并显示出显著的蛋白酶抗性,高溶解度和热稳定性,同时保持其特异性。此外,它对目标肽表现出纳摩尔范围的亲和力。突变筛选表明,在选择过程中优选具有提高的同二聚体稳定性和提高的表达率的靶结合螺旋。iM10/MITF-CC异二聚体(2.1µ)的晶体结构提供了重要的结构见解,并验证了我们的设计预测。重要的是,iM10不仅与MITF卷曲螺旋结合,以及MITF的显著更稳定的HLHLZ结构域。表征半理性文库的所选变体证明了创新细菌选择方法的潜力。
    The design and selection of peptides targeting cellular proteins is challenging and often yields candidates with undesired properties. Therefore we deployed a new selection system based on the twin-arginine translocase (TAT) pathway of Escherichia coli, named hitchhiker translocation (HiT) selection. A pool of α-helix encoding sequences was designed and selected for interference with the coiled coil domain (CC) of a melanoma-associated basic-helix-loop-helix-leucine-zipper (bHLHLZ) protein, the microphthalmia associated transcription factor (MITF). One predominant sequence (iM10) was enriched during selection and showed remarkable protease resistance, high solubility and thermal stability while maintaining its specificity. Furthermore, it exhibited nanomolar range affinity towards the target peptide. A mutation screen indicated that target-binding helices of increased homodimer stability and improved expression rates were preferred in the selection process. The crystal structure of the iM10/MITF-CC heterodimer (2.1Å) provided important structural insights and validated our design predictions. Importantly, iM10 did not only bind to the MITF coiled coil, but also to the markedly more stable HLHLZ domain of MITF. Characterizing the selected variants of the semi-rational library demonstrated the potential of the innovative bacterial selection approach.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    背景:硫氧还蛋白系统通过硫氧还蛋白和硫氧还蛋白还原酶的作用维持氧化还原平衡。硫氧还蛋白调节各种底物的活性,包括那些能抵消细胞氧化应激的.这些包括过氧化物酶,甲硫氨酸亚砜还原酶A和特异性转录因子。特别相关的是氧化还原因子-1,其进而激活其他氧化还原调节的转录因子。
    方法:讨论了人类硫氧还蛋白和硫氧还蛋白还原酶基因启动子中实验定义的转录因子结合位点以及参与调节细胞氧化还原状态的主要硫氧还蛋白系统底物的启动子。使用计算机模拟方法来鉴定所有这些启动子中这些转录因子的潜在推定结合位点。
    结论:我们的分析表明许多氧化还原基因启动子含有相同的转录因子结合位点。这些转录因子中的几个依次是氧化还原调节的。ARE存在于这些启动子中的几个中,并且在各种氧化应激刺激期间被Nrf2结合以上调基因表达。在相同的氧化应激刺激过程中,其他转录因子也与这些启动子结合,这种冗余支持了抗氧化反应的重要性。推定的转录因子位点在计算机中鉴定,结合该基因启动子的特定调控知识,可以为未来的实验提供信息。
    结论:氧化还原蛋白参与许多细胞信号通路,异常表达可导致疾病或其他病理状况。因此,理解它们的表达如何被调节对于开发靶向这些途径的治疗剂是相关的。
    BACKGROUND: The thioredoxin system maintains redox balance through the action of thioredoxin and thioredoxin reductase. Thioredoxin regulates the activity of various substrates, including those that function to counteract cellular oxidative stress. These include the peroxiredoxins, methionine sulfoxide reductase A and specific transcription factors. Of particular relevance is Redox Factor-1, which in turn activates other redox-regulated transcription factors.
    METHODS: Experimentally defined transcription factor binding sites in the human thioredoxin and thioredoxin reductase gene promoters together with promoters of the major thioredoxin system substrates involved in regulating cellular redox status are discussed. An in silico approach was used to identify potential putative binding sites for these transcription factors in all of these promoters.
    CONCLUSIONS: Our analysis reveals that many redox gene promoters contain the same transcription factor binding sites. Several of these transcription factors are in turn redox regulated. The ARE is present in several of these promoters and is bound by Nrf2 during various oxidative stress stimuli to upregulate gene expression. Other transcription factors also bind to these promoters during the same oxidative stress stimuli, with this redundancy supporting the importance of the antioxidant response. Putative transcription factor sites were identified in silico, which in combination with specific regulatory knowledge for that gene promoter may inform future experiments.
    CONCLUSIONS: Redox proteins are involved in many cellular signalling pathways and aberrant expression can lead to disease or other pathological conditions. Therefore understanding how their expression is regulated is relevant for developing therapeutic agents that target these pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号