Mice islets

  • 文章类型: Journal Article
    目的:芹菜素,一种天然的生物类黄酮,被报道为抗糖尿病药物,因为它具有抑制α-葡萄糖苷酶活性的能力,引起胰岛素作用和分泌的刺激,管理ROS,预防糖尿病并发症。芹菜素被确定为一种新的胰岛素促分泌素,可增强葡萄糖刺激的胰岛素分泌,并且似乎是更好的抗糖尿病药物候选物。在这里,我们探讨了芹菜素在小鼠胰岛和糖尿病大鼠体内的促胰岛素作用机制。
    方法:将大小匹配的胰岛分成几组,在有或没有芹菜素和主要胰岛素信号通路的激动剂或拮抗剂的情况下孵育。通过ELISA测量分泌的胰岛素。通过cAMP乙酰化测定估计细胞内cAMP。在糖尿病大鼠中评估芹菜素的急性和慢性作用。
    结果:芹菜素剂量依赖性地增强了离体小鼠胰岛的胰岛素分泌,其促胰岛素作用在高葡萄糖浓度下明显不同于格列本脲。此外,芹菜素增强了去极化和格列本脲治疗的胰岛中葡萄糖诱导的胰岛素分泌。芹菜素对细胞内cAMP浓度没有影响;然而,芹菜素对毛喉素和IBMX诱导的胰岛素分泌均有累加作用。有趣的是,H89,一种PKA抑制剂,和U0126,一种MEK激酶抑制剂,显着抑制芹菜素诱导的胰岛素分泌;然而,使用epac2抑制剂ESI-05未观察到显著效果.芹菜素可改善糖尿病大鼠的葡萄糖耐量并增加葡萄糖刺激的血浆胰岛素水平。芹菜素还可以降低长期治疗后的糖尿病大鼠的血糖。
    结论:芹菜素通过独立于K-ATP通道调节PKA-MEK激酶信号级联来发挥葡萄糖刺激的胰岛素分泌。
    OBJECTIVE: Apigenin, a natural bioflavonoid, is reported as an anti-diabetic agent since it possesses the ability to inhibit α-glucosidase activity, cause stimulation of insulin action and secretion, manage ROS, and prevent diabetes complications. Apigenin was identified as a new insulin secretagogue that enhances glucose-stimulated insulin secretion and seems like a better antidiabetic drug candidate. Here we explored the insulinotropic mechanism(s) of apigenin in vitro in mice islets and in vivo in diabetic rats.
    METHODS: Size-matched pancreatic islets were divided into groups and incubated in the presence or absence of apigenin and agonists or antagonists of major insulin signaling pathways. The secreted insulin was measured by ELISA. The intracellular cAMP was estimated by cAMP acetylation assay. The acute and chronic effects of apigenin were evaluated in diabetic rats.
    RESULTS: apigenin dose-dependently enhanced insulin secretion in isolated mice islets, and its insulinotropic effect was exerted at high glucose concentrations distinctly different from glibenclamide. Furthermore, apigenin amplified glucose-induced insulin secretion in depolarized and glibenclamide-treated islets. Apigenin showed no effect on intracellular cAMP concentration; however, an additive effect was observed by apigenin in both forskolin and IBMX-induced insulin secretion. Interestingly, H89, a PKA inhibitor, and U0126, a MEK kinase inhibitor, significantly inhibited apigenin-induced insulin secretion; however, no significant effect was observed by using ESI-05, an epac2 inhibitor. Apigenin improved glucose tolerance and increased glucose-stimulated plasma insulin levels in diabetic rats. Apigenin also lowered blood glucose in diabetic rats upon chronic treatment.
    CONCLUSIONS: Apigenin exerts glucose-stimulated insulin secretion by modulating the PKA-MEK kinase signaling cascade independent of K-ATP channels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Comparative Study
    Tambulin, a flavonol isolated from Zanthoxylum armatum, showed potent insulin secretory activity in our preliminary anti-diabetic screening. Here, we explored the insulin secretory mechanism(s) of tambulin focusing in glucose-dependent, KATP ‒ and Ca2+‒channels dependent, and cAMP-PKA pathways. Mice islets and MIN6 cells were incubated with tambulin in the presence of pharmacological agonists/antagonists and the secreted insulin was measured using mouse insulin ELISA kit. The intracellular cAMP was measured by an acetylation cAMP ELISA kit. Tambulin (200 μM) showed potent insulin secretory activity only at stimulatory glucose (11-25 mM) concentrations; however, no change in insulin release was observed at basal glucose both in mice islets and MIN6 cells. Notably, in the presence of diazoxide, a KATP channel opener; the incomplete inhibition of tambulin-induced insulin secretion was observed whereas, complete inhibition was found using verapamil, an L-type Ca2+ channel blocker. Furthermore, the insulinotropic potential of tambulin was amplified in tolbutamide treated, and depolarized islets suggest tambulin\'s target other than tolbutamide. Tambulin showed no additive effect in the IBMX-induced intracellular cAMP; whereas, exerted an additive effect in the IBMX-induced insulin secretion. Furthermore, tambulin-induced insulin secretion was dramatically inhibited by PKA inhibitor (H-89), while moderate inhibition was found by using PKC inhibitor (calphostin C). Molecular docking studies also showed the best binding affinities of tambulin with PKA suggest the PKA dependent signaling cascade is involved more in tambulin-induced insulin secretion. Based on these findings, it is concluded that tambulin stimulates insulin secretion in a Ca2+ channel-dependent but KATP channel-independent manner, most likely by activating the cAMP-PKA pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Recently, we reported the role of coixol (6-methoxy-2(3H)-benzoxazolone), an alkaloid from Scoparia dulcis, in glucose-dependent insulin secretion; however, its insulin secretory mechanism(s) remained unknown. Here, we explored the insulinotropic mechanism(s) of coixol in vitro and in vivo. Mice islets were batch incubated, perifused with coixol in the presence of agonists/antagonists, and insulin secretion was measured by ELISA. Intracellular cAMP levels were measured using enzyme immunoassay. K+- and Ca2+-currents were recorded in MIN6 cells using whole-cell patch-clamp technique. The in vivo glucose tolerance and the insulinogenic index were evaluated in diabetic rats treated with coixol at 25 and 50 mg/kg, respectively. Coixol, unlike sulfonylurea, enhanced insulin secretion in batch incubated and perifused islets at high glucose, with no effect at basal glucose concentrations. Coixol showed no pronounced effect on the inward rectifying K+- and Ca2+-currents in whole-cell patch recordings. Moreover, coixol-induced insulin secretion was further amplified in the depolarized islets. Coixol showed an additive effect with forskolin (10 μM)-induced cAMP level, and in insulin secretion; however, no additive effect was observed with isobutylmethylxanthine (IBMX, 100 μM)-induced cAMP level, nor in insulin secretion. The PKA inhibitor H-89 (50 μM), and Epac2 inhibitor MAY0132 (50 μM) significantly inhibited the coixol-induced insulin secretion (P < 0.01). Furthermore, insulin secretory kinetics revealed that coixol potentiates insulin secretion in both early and late phases of insulin secretion. In diabetic animals, coixol showed significant improvement in glucose tolerance and on fasting blood glucose levels. These data suggest that coixol amplifies glucose-stimulated insulin secretion by cAMP-mediated signaling pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Eriodictyol, a flavonoid isolated from Lyonia ovalifolia, was found to be the most potent insulin secretagogue in our preliminary studies. Here, we explored mechanism(s) of insulin secretory activity of eriodictyol in vitro and in vivo. Mice islets and MIN6 cells were incubated in basal and stimulatory glucose containing eriodictyol with or without agonist/antagonist. Secreted insulin and cAMP contents were measured using ELISA kits. K+- and Ca2+-channels currents were recorded with patch-clamp technique. Oral glucose tolerance test and plasma insulin was evaluated in non-diabetic and diabetic rats. Eriodictyol stimulated insulin secretion from mice islets and MIN6 cells only at stimulatory glucose concentrations with maximum effect at 200μM. Eriodictyol showed no pronounced effect on inward rectifying K+ and Ca2+ currents. Furthermore, in KCl depolarized islets, in the presence of diazoxide, insulin secretory ability of eriodictyol was enhanced. IBMX, a phosphodiesterase inhibitor, significantly (P<0.001) enhanced eriodictyol-induced insulin secretion at 16.7mM glucose in comparison to eriodictyol or IBMX alone. The cAMP content after eriodictyol exposure was also increased. Eriodictyol-induced insulin secretion was partially inhibited by adenylate cyclase inhibitor (SQ22536) and completely inhibited by PKA inhibitor (H-89), suggesting that the eriodictyol effect is more on PKA. Molecular docking studies showed the best binding affinities of eriodictyol with PKA. Eriodictyol improved glucose tolerance and enhanced plasma insulin in non-diabetic and diabetic rats. Eriodictyol also lowered blood glucose in diabetic rats upon chronic treatment. Taken together, it can be concluded that eriodictyol, a novel insulin secretagogue, exerts an exclusive glucose-dependent insulinotropic effect through cAMP/PKA pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号