Methyl-Accepting Chemotaxis Proteins

  • 文章类型: Journal Article
    细菌趋化性的感觉适应是由甲基接受趋化蛋白(MCP)的翻译后修饰介导的。在大肠杆菌中,适应蛋白质CheR和CheB系链到保守的C末端受体五肽。这里,我们研究了五肽基序(N/D)WE(E/N)F在中华根瘤菌趋化性中的功能。等温滴定量热法显示,相对于未修饰的CheB,五肽对CheR和活化的CheB的亲和力更强。在一个或所有四个MCP五肽中保守色氨酸突变的菌株导致对甘氨酸甜菜碱的趋化性显着降低或丧失,赖氨酸,和醋酸盐,由携带五肽的McpX和缺乏五肽的McpU和McpV感知的化学引诱物,分别。重要的是,我们发现五肽通过柔性接头融合到缺乏五肽的化学感受器的C端时介导趋化性。我们建议适应辅助和阈值数量的可用位点能够将适应蛋白有效地对接到化学感应阵列。总之,这些结果表明,Meliloti有效地利用了具有最小数量的连接单元的五肽依赖性适应系统来辅助缺乏五肽的化学感受器,并假设与大肠杆菌相比,Meliloti中CheR和CheB的丰度较高,可以将适应蛋白大量募集到化学感阵中.
    Sensory adaptation in bacterial chemotaxis is mediated by posttranslational modifications of methyl-accepting chemotaxis proteins (MCPs). In Escherichia coli, the adaptation proteins CheR and CheB tether to a conserved C-terminal receptor pentapeptide. Here,we investigated the function of the pentapeptide motif (N/D)WE(E/N)F in Sinorhizobium meliloti chemotaxis. Isothermal titration calorimetry revealed stronger affinity of the pentapeptides to CheR and activated CheB relative to unmodified CheB. Strains with mutations of the conserved tryptophan in one or all four MCP pentapeptides resulted in a significant decrease or loss of chemotaxis to glycine betaine, lysine, and acetate, chemoattractants sensed by pentapeptide-bearing McpX and pentapeptide-lacking McpU and McpV, respectively. Importantly, we discovered that the pentapeptide mediates chemotaxis when fused to the C-terminus of pentapeptide-lacking chemoreceptors via a flexible linker. We propose that adaptational assistance and a threshold number of available sites enable the efficient docking of adaptation proteins to the chemosensory array. Altogether, these results demonstrate that S. meliloti effectively utilizes a pentapeptide-dependent adaptation system with a minimal number of tethering units to assist pentapeptide-lacking chemoreceptors and hypothesize that the higher abundance of CheR and CheB in S. meliloti compared to E. coli allows for ample recruitment of adaptation proteins to the chemosensory array.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    活动细菌使用大型受体阵列来检测其环境中的化学和物理刺激,处理这些复杂的信息,因此,他们的游泳偏向他们认为有利的方向。化学感受器分子通过其细胞质尖端之间的直接接触形成受体二聚体的三脚架状三聚体。一对三聚体,连同一种专用的激酶,形成一个核心信号复合体。数以百计的核心复杂网络形成扩展阵列。虽然在揭示阵列的层次结构方面取得了相当大的进展,这些结构中潜在的信号处理分子特性仍不清楚。在这里,我们通过遵循构象和激酶控制对引诱剂刺激和受体分子各个位置的输出偏置病变的反应,分析了活细胞中非网络核心复合物的信号传导特性。与普遍的观点相反,个体受体是二元的两状态装置,我们证明了配体结合和激酶控制受体结构域之间的构象偶联是,事实上,只有适度。此外,我们证明了相邻受体之间通过其三聚体接触结构域进行的通信,这将使它们偏向于采用相似的信号状态。一起来看,这些数据表明了受体三聚体中的信号传导观点,该观点允许在单个核心复合物中发生显著的信号整合.
    Motile bacteria use large receptor arrays to detect chemical and physical stimuli in their environment, process this complex information, and accordingly bias their swimming in a direction they deem favorable. The chemoreceptor molecules form tripod-like trimers of receptor dimers through direct contacts between their cytoplasmic tips. A pair of trimers, together with a dedicated kinase enzyme, form a core signaling complex. Hundreds of core complexes network to form extended arrays. While considerable progress has been made in revealing the hierarchical structure of the array, the molecular properties underlying signal processing in these structures remain largely unclear. Here we analyzed the signaling properties of nonnetworked core complexes in live cells by following both conformational and kinase control responses to attractant stimuli and to output-biasing lesions at various locations in the receptor molecule. Contrary to the prevailing view that individual receptors are binary two-state devices, we demonstrate that conformational coupling between the ligand binding and the kinase-control receptor domains is, in fact, only moderate. In addition, we demonstrate communication between neighboring receptors through their trimer-contact domains that biases them to adopt similar signaling states. Taken together, these data suggest a view of signaling in receptor trimers that allows significant signal integration to occur within individual core complexes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细菌趋化系统是促进细菌成功的众所周知的信号通路。趋化性系统包括化学感受器和CheA激酶,由CheW或CheV支架蛋白连接。支架蛋白提供化学感受器和CheA之间以及化学感受器之间的连接以创建大分子阵列。趋化性是许多微生物定植宿主所必需的,包括胃病原体幽门螺杆菌。这种细菌与两种不同的支架蛋白建立化学感受器-CheA接触,CheW和CheV1.幽门螺杆菌cheW或cheV1缺失突变体都失去化学感受器阵列形成,但表现出不同的半固体琼脂趋化性测定行为:ΔcheW突变体表现出完全迁移失败,而ΔcheV1::猫突变体显示50%的减少。在调查这些不同的反应时,我们发现这两种突变体最初都在迁徙中挣扎。然而,随着时间的推移,÷cheV1::猫突变体发展出稳定的,增强的迁移能力,称为“可迁移”(Mig+)。对四个不同ΔcheV1::catMig菌株的全基因组测序分析鉴定了hpg27_252(hp0273)中的单核苷酸多态性(SNP),这些多态性被预测为截短编码的蛋白质。对hpg27_252编码的蛋白质的计算分析表明,它编码了一种假设的蛋白质,该蛋白质是PilOIV型丝膜比对复合蛋白的远程同源物。尽管幽门螺杆菌缺乏IV型细丝,我们的分析表明它保留了PilO同源基因的操纵子,PilN,和PilM。在÷cheV1::cat或野生型菌株中删除hpg27_252导致半固体琼脂中的迁移增强。因此,我们的研究表明,虽然cheV1突变体最初具有显著的迁移缺陷,它们可以通过基因抑制因子恢复迁移能力,强调了细菌迁移中复杂的调节机制。
    目的:趋化运动性,存在于超过一半的细菌中,依赖于包含受体的趋化性信号系统,激酶,和支架蛋白。在幽门螺杆菌中,胃病原体,趋化性对于定殖至关重要,以CheV1和CheW为关键支架蛋白。虽然这两种支架对于构建化学感受器复合物至关重要,它们的作用在其他测定中有所不同。我们的研究重新检查了cheV1突变体在半固体琼脂中的行为,标准的趋化性测试。最初,cheV1突变体表现出与cheW突变体相似的缺陷,但是他们进化出了基因抑制基因,增强了迁移能力。这些抑制因子涉及以前未表征的基因的突变,未知的运动行为。我们的发现强调了cheV1突变体中的显着趋化性缺陷,并确定了影响细菌运动性的新元素。
    The bacterial chemotaxis system is a well-understood signaling pathway that promotes bacterial success. Chemotaxis systems comprise chemoreceptors and the CheA kinase, linked by CheW or CheV scaffold proteins. Scaffold proteins provide connections between chemoreceptors and CheA and also between chemoreceptors to create macromolecular arrays. Chemotaxis is required for host colonization by many microbes, including the stomach pathogen Helicobacter pylori. This bacterium builds chemoreceptor-CheA contacts with two distinct scaffold proteins, CheW and CheV1. H. pylori cheW or cheV1 deletion mutants both lose chemoreceptor array formation, but show differing semisolid agar chemotaxis assay behaviors: ∆cheW mutants exhibit total migration failure, whereas ∆cheV1::cat mutants display a 50% reduction. On investigating these varied responses, we found that both mutants initially struggle with migration. However, over time, ∆cheV1::cat mutants develop a stable, enhanced migration capability, termed \"migration-able\" (Mig+). Whole-genome sequencing analysis of four distinct ∆cheV1::cat Mig+ strains identified single-nucleotide polymorphisms (SNPs) in hpg27_252 (hp0273) that were predicted to truncate the encoded protein. Computational analysis of the hpg27_252-encoded protein revealed it encoded a hypothetical protein that was a remote homolog of the PilO Type IV filament membrane alignment complex protein. Although H. pylori lacks Type IV filaments, our analysis showed it retains an operon of genes for homologs of PilO, PilN, and PilM. Deleting hpg27_252 in the ∆cheV1::cat or wild type strain resulted in enhanced migration in semisolid agar. Our study thus reveals that while cheV1 mutants initially have significant migration defects, they can recover the migration ability through genetic suppressors, highlighting a complex regulatory mechanism in bacterial migration.
    Chemotactic motility, present in over half of bacteria, depends on chemotaxis signaling systems comprising receptors, kinases, and scaffold proteins. In Helicobacter pylori, a stomach pathogen, chemotaxis is crucial for colonization, with CheV1 and CheW as key scaffold proteins. While both scaffolds are essential for building chemoreceptor complexes, their roles vary in other assays. Our research reexamines cheV1 mutants\' behavior in semisolid agar, a standard chemotaxis test. Initially, cheV1 mutants exhibited defects similar to those of cheW mutants, but they evolved genetic suppressors that enhanced migration. These suppressors involve mutations in a previously uncharacterized gene, unknown in motility behavior. Our findings highlight the significant chemotaxis defects in cheV1 mutants and identify new elements influencing bacterial motility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    活动细菌使用趋化性导航到有利的条件并远离不利的环境。传感引诱剂的机制是众所周知的;然而,细菌如何感知驱避剂的分子方面尚未确定。这里,我们将苹果酸鉴定为睾丸Coamonas细菌中MCP2201化学感受器所识别的驱避剂,并表明它与引诱剂柠檬酸盐结合在同一位点.驱虫剂和引诱剂的结合决定簇只有很小的差异,结合位点中的单个氨基酸取代将对苹果酸的反应从驱避剂逆转为引诱剂。我们发现苹果酸和柠檬酸盐以相反的方式影响配体结合结构域的寡聚化状态。我们还观察到驱避剂和引诱剂结合对将感觉结构域连接到跨膜螺旋的α螺旋的方向的相反作用。我们提出了一个模型来说明如何产生正信号和负信号。
    Motile bacteria navigate toward favorable conditions and away from unfavorable environments using chemotaxis. Mechanisms of sensing attractants are well understood; however, molecular aspects of how bacteria sense repellents have not been established. Here, we identified malate as a repellent recognized by the MCP2201 chemoreceptor in a bacterium Comamonas testosteroni and showed that it binds to the same site as an attractant citrate. Binding determinants for a repellent and an attractant had only minor differences, and a single amino acid substitution in the binding site inverted the response to malate from a repellent to an attractant. We found that malate and citrate affect the oligomerization state of the ligand-binding domain in opposing way. We also observed opposing effects of repellent and attractant binding on the orientation of an alpha helix connecting the sensory domain to the transmembrane helix. We propose a model to illustrate how positive and negative signals might be generated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    大肠杆菌趋化性信号通路已成为大型蛋白质复合物自适应感知环境信号的模型系统。化学感受器响应于细胞外配体浓度控制CheA的激酶活性,并通过甲基化和去甲基化在宽浓度范围内适应。甲基化使激酶反应曲线在配体浓度上移动几个数量级,同时引起配体结合曲线的小得多的变化。这里,我们表明,在结合和激酶反应的不成比例的变化是不一致的平衡变构模型。为了解决这种不一致,我们提出了一个非平衡变构模型,明确包括由三磷酸腺苷(ATP)水解驱动的耗散反应循环。该模型成功地解释了配体结合的所有现有联合测量,受体构象,以及天冬氨酸和丝氨酸受体的激酶活性。我们的结果表明,受体复合物充当酶:受体甲基化调节激酶的ON状态动力学(例如,磷酸化率),而配体结合控制激酶ON/OFF状态之间的平衡平衡。此外,足够的能量耗散负责维持和增强激酶反应的灵敏度范围和幅度。通过成功拟合DosP细菌氧感应系统中先前无法解释的数据,我们证明了非平衡变构模型广泛适用于其他传感器激酶系统。总的来说,这项工作为大型蛋白质复合物的协同感知提供了非平衡物理学的观点,并为通过同时测量和模拟配体结合和下游反应来理解其微观机制开辟了研究方向。
    The Escherichia coli chemotaxis signaling pathway has served as a model system for the adaptive sensing of environmental signals by large protein complexes. The chemoreceptors control the kinase activity of CheA in response to the extracellular ligand concentration and adapt across a wide concentration range by undergoing methylation and demethylation. Methylation shifts the kinase response curve by orders of magnitude in ligand concentration while incurring a much smaller change in the ligand binding curve. Here, we show that the disproportionate shift in binding and kinase response is inconsistent with equilibrium allosteric models. To resolve this inconsistency, we present a nonequilibrium allosteric model that explicitly includes the dissipative reaction cycles driven by adenosine triphosphate (ATP) hydrolysis. The model successfully explains all existing joint measurements of ligand binding, receptor conformation, and kinase activity for both aspartate and serine receptors. Our results suggest that the receptor complex acts as an enzyme: Receptor methylation modulates the ON-state kinetics of the kinase (e.g., phosphorylation rate), while ligand binding controls the equilibrium balance between kinase ON/OFF states. Furthermore, sufficient energy dissipation is responsible for maintaining and enhancing the sensitivity range and amplitude of the kinase response. We demonstrate that the nonequilibrium allosteric model is broadly applicable to other sensor-kinase systems by successfully fitting previously unexplained data from the DosP bacterial oxygen-sensing system. Overall, this work provides a nonequilibrium physics perspective on cooperative sensing by large protein complexes and opens up research directions for understanding their microscopic mechanisms through simultaneous measurements and modeling of ligand binding and downstream responses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    游动细菌采用保守的趋化网络来检测周围环境中的化学梯度,并有效地调节其运动。使必需营养素和其他重要生物生态位的位置。趋化途径的感觉设备是一组由跨膜化学感受器组成的核心信号单元(CSU),组氨酸激酶CheA和一种衔接蛋白,嚼。虽然趋化性途径代表了最容易理解的信号传导系统,由于缺乏CSU和扩展阵列的完整结构图片,阻碍了对信号转导的详细机理理解。在这项研究中,我们提出了来自噬菌体φX174E蛋白裂解大肠杆菌细胞的完整CSU的结构,使用低温电子层析成像和平均分辨率为12µ的亚断层图像确定。使用AlphaFold2,我们进一步预测CSU的组成蛋白的原子结构以及关键的蛋白质-蛋白质界面,启用全原子CSU模型的装配,我们使用低温电子层析成像图对其进行构象细化。所得模型的分子动力学模拟为复杂的周质组织提供了新的见解,包括相邻受体配体结合域之间的新型相互作用。我们的结果进一步阐明了以前未解决的各个CheA域之间的相互作用,包括P1二聚体和P1和P4之间的非生产性结合模式,增强了我们对CheA信号传导和调节的结构机制的理解。重要性细菌趋化性是一种无处不在的行为,使细胞运动朝向或远离特定的化学物质。它是理解细胞感觉信号转导和运动的重要模型。对趋化性基础的分子机制的表征具有根本意义,需要传感机械的高分辨率结构图片,化学感应阵列。在这项研究中,我们将低温电子层析成像和分子模拟相结合,以呈现核心信号单元的完整结构,化学感官阵列的基本组成部分,来自大肠杆菌。我们的结果为以前分辨率较差的复合体区域提供了新的见解,并为设计新的实验以测试机理假设提供了结构基础。
    OBJECTIVE: Bacterial chemotaxis is a ubiquitous behavior that enables cell movement toward or away from specific chemicals. It serves as an important model for understanding cell sensory signal transduction and motility. Characterization of the molecular mechanisms underlying chemotaxis is of fundamental interest and requires a high-resolution structural picture of the sensing machinery, the chemosensory array. In this study, we combine cryo-electron tomography and molecular simulation to present the complete structure of the core signaling unit, the basic building block of chemosensory arrays, from Escherichia coli. Our results provide new insight into previously poorly-resolved regions of the complex and offer a structural basis for designing new experiments to test mechanistic hypotheses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    致病性螺旋体可以改变其形态和行为以感染并在其宿主中存活。以前的报道表明,所谓的“圆形身体”和生物膜的形成,趋化性与螺旋体的发病机制有关。这里,我们报告了这些细胞状态之间的直接联系,涉及一类新的蛋白质传感器,迄今功能尚不清楚。使用低温电子显微镜,遗传学,行为分析,和分子建模,我们证明螺旋体通过锚定在趋化性阵列上的SAM传感器响应小分子S-腺苷甲硫氨酸(SAM)调节这些行为。此外,我们建立了一个改进的圆体形成模型,现在包括对数生长阶段的表征。重要性一类新的细菌蛋白质传感器监测细胞内S-腺苷甲硫氨酸水平以调节细胞形态,趋化性,和生物膜的形成。这些行为的同时调节使细菌病原体能够在其生态位内存活。这个传感器,例如DinticolaCheWS,锚定到趋化性阵列并且其传感器域位于趋化性环下方。该位置可以允许传感器直接与趋化性组氨酸激酶CheA相互作用。总的来说,这些数据确立了CheWS在发病机制中的关键作用,并进一步说明了研究非经典趋化蛋白的影响.
    OBJECTIVE: A new class of bacterial protein sensors monitors intracellular levels of S-adenosylmethionine to modulate cell morphology, chemotaxis, and biofilm formation. Simultaneous regulation of these behaviors enables bacterial pathogens to survive within their niche. This sensor, exemplified by Treponema denticola CheWS, is anchored to the chemotaxis array and its sensor domain is located below the chemotaxis rings. This position may allow the sensor to directly interact with the chemotaxis histidine kinase CheA. Collectively, these data establish a critical role of CheWS in pathogenesis and further illustrate the impact of studying non-canonical chemotaxis proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    活动细菌具有趋化性系统,使它们能够感知其环境并引导其游泳朝向有利条件。趋化性涉及信号传导过程,其中配体与化学感受器的胞外结构域结合改变组氨酸激酶的活性,Chea,结合到受体的远端细胞质尖端约300埃,启动控制鞭毛旋转的磷酸化级联。受体的细胞质结构域被认为通过动力学和/或稳定性的变化传播该信号。但目前尚不清楚这些变化如何调节CheA的激酶活性。为了解决这个问题,我们已经使用氢氘交换质谱来探测CheA在大肠杆菌天冬氨酸受体细胞质片段的功能信号复合物中的结构和动力学,Chea,还有CheW.我们的结果表明,CheA的P4催化域的稳定与激酶激活相关。此外,在感觉适应期间发生的激酶激活的差异取决于CheA的P3二聚化结构域的受体不稳定。最后,带有磷酸化组氨酸的P1结构域的氢交换特性可识别CheA二聚体中P1/P1'的二聚体界面,并支持催化的有序顺序结合机制,其中二聚体P1/P1'仅在核苷酸结合时与P4具有生产性相互作用。因此,结构域的稳定/不稳定是趋化性中调节CheA激酶活性机制的关键要素,并可能在控制其他激酶中发挥作用。
    Motile bacteria have a chemotaxis system that enables them to sense their environment and direct their swimming toward favorable conditions. Chemotaxis involves a signaling process in which ligand binding to the extracellular domain of the chemoreceptor alters the activity of the histidine kinase, CheA, bound ~300 Å away to the distal cytoplasmic tip of the receptor, to initiate a phosphorylation cascade that controls flagellar rotation. The cytoplasmic domain of the receptor is thought to propagate this signal via changes in dynamics and/or stability, but it is unclear how these changes modulate the kinase activity of CheA. To address this question, we have used hydrogen deuterium exchange mass spectrometry to probe the structure and dynamics of CheA within functional signaling complexes of the Escherichia coli aspartate receptor cytoplasmic fragment, CheA, and CheW. Our results reveal that stabilization of the P4 catalytic domain of CheA correlates with kinase activation. Furthermore, differences in activation of the kinase that occur during sensory adaptation depend on receptor destabilization of the P3 dimerization domain of CheA. Finally, hydrogen exchange properties of the P1 domain that bears the phosphorylated histidine identify the dimer interface of P1/P1\' in the CheA dimer and support an ordered sequential binding mechanism of catalysis, in which dimeric P1/P1\' has productive interactions with P4 only upon nucleotide binding. Thus stabilization/destabilization of domains is a key element of the mechanism of modulating CheA kinase activity in chemotaxis, and may play a role in the control of other kinases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细菌和古细菌中的趋化性取决于由与基板信号蛋白环相互作用的膜结合化学感受器组成的六角形极性阵列的存在。在巴西固氮螺旋菌中,趋化性由两个趋化性信号系统(Che1和Che4)控制,所述趋化性信号系统在两个空间上不同的膜结合化学感受器阵列的基板处混合。趋化性信号簇中跨膜化学感受器的亚细胞定位和组织已得到充分表征,但可溶性化学感受器的亚细胞定位和组织仍相对不足。通过结合诱变,显微镜,和生化化验,我们表明,细胞质化学受体AerC和Tlp4b在趋化性中起作用,并定位并与来自两个极性阵列的膜结合化学受体和趋化性信号蛋白相互作用,表明可溶性化学感受器是混杂的。AerC和Tlp4b与极性趋化性信号簇的相互作用是不等效的,并暗示了不同的功能。Tlp4b,但不是AerC,通过未知机制调节信号簇内化学感受器的丰度。AerC化学感受器,但不是Tlp4b,能够根据其表达水平进出趋化性信号簇。我们还确定了趋化性信号簇的化学感受器组成在调节其极性亚细胞组织中的作用。趋化性信号蛋白作为大的膜结合阵列的组织是趋化性敏感性的基础。我们的发现表明,化学感受器的组成不仅可以通过其化学感觉特异性而且还可以通过其在极性趋化性信号簇的组织中的作用来微调趋化性信号。重要性细胞质化学感受器约占细菌和古细菌基因组中编码的所有化学感受器的14%。但对它们如何与膜结合趋化性信号簇的大型极性组件相互作用并在其中发挥作用的情况知之甚少。这里,我们发现,两种在趋化性中起作用的可溶性化学感受器是混杂的,并与两个不同的膜结合趋化性信号簇相互作用,这两个信号簇控制巴西拟螺旋菌中的所有趋化性反应.我们还发现,趋化性信号簇的化学感受器组成的任何变化都会改变它们的极性组织,表明趋化性信号簇的感觉特异性与其极膜组织之间存在动态相互作用。
    Chemotaxis in Bacteria and Archaea depends on the presence of hexagonal polar arrays composed of membrane-bound chemoreceptors that interact with rings of baseplate signaling proteins. In the alphaproteobacterium Azospirillum brasilense, chemotaxis is controlled by two chemotaxis signaling systems (Che1 and Che4) that mix at the baseplates of two spatially distinct membrane-bound chemoreceptor arrays. The subcellular localization and organization of transmembrane chemoreceptors in chemotaxis signaling clusters have been well characterized but those of soluble chemoreceptors remain relatively underexplored. By combining mutagenesis, microscopy, and biochemical assays, we show that the cytoplasmic chemoreceptors AerC and Tlp4b function in chemotaxis and localize to and interact with membrane-bound chemoreceptors and chemotaxis signaling proteins from both polar arrays, indicating that soluble chemoreceptors are promiscuous. The interactions of AerC and Tlp4b with polar chemotaxis signaling clusters are not equivalent and suggest distinct functions. Tlp4b, but not AerC, modulates the abundance of chemoreceptors within the signaling clusters through an unknown mechanism. The AerC chemoreceptor, but not Tlp4b, is able to traffic in and out of chemotaxis signaling clusters depending on its level of expression. We also identify a role of the chemoreceptor composition of chemotaxis signaling clusters in regulating their polar subcellular organization. The organization of chemotaxis signaling proteins as large membrane-bound arrays underlies chemotaxis sensitivity. Our findings suggest that the composition of chemoreceptors may fine-tune chemotaxis signaling not only through their chemosensory specificity but also through their role in the organization of polar chemotaxis signaling clusters. IMPORTANCE Cytoplasmic chemoreceptors represent about 14% of all chemoreceptors encoded in bacterial and archaeal genomes, but little is known about how they interact with and function in large polar assemblies of membrane-bound chemotaxis signaling clusters. Here, we show that two soluble chemoreceptors with a role in chemotaxis are promiscuous and interact with two distinct membrane-bound chemotaxis signaling clusters that control all chemotaxis responses in Azospirillum brasilense. We also found that any change in the chemoreceptor composition of chemotaxis signaling clusters alters their polar organization, suggesting a dynamic interplay between the sensory specificity of chemotaxis signaling clusters and their polar membrane organization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    趋化性是细菌寻找营养来源并避免有害化学物质的基本过程。对于共生土壤细菌中华根瘤菌,趋化系统在与豆类宿主的相互作用中也起着至关重要的作用。趋化信号级联是通过引诱剂或驱避剂化合物与化学感受器或甲基接受趋化蛋白(MCP)的相互作用引发的。S.meliloti具有八种化学感受器来介导趋化性。这些受体中的六种是具有周质配体结合结构域(LBD)的跨膜蛋白。McpW和McpZ的具体功能仍然未知。这里,我们以2.7µ分辨率报告了McpZ(McpZPD)的周质结构域的晶体结构。McpZPD假定由三个串联的四螺旋束模块组成的新型折叠。通过系统发育分析,我们发现这种螺旋三模块结构域折叠出现在根瘤菌科内,并且仍在迅速发展。结构,提供了一种罕见的无配体二聚体MCP-LBD,揭示了一种新颖的二聚化界面。分子动力学计算表明,配体结合将诱导构象变化,从而导致McpZPD二聚体的膜近端结构域内的大的水平螺旋运动,并伴随着末端螺旋向内部细胞膜的垂直移动。这些结果表明,该MCP家族的跨膜信号传导机制需要活塞式和剪断式运动。预测的运动终止于紧密反映在相关配体结合的MCP-LBD中观察到的构象。
    Chemotaxis is a fundamental process whereby bacteria seek out nutrient sources and avoid harmful chemicals. For the symbiotic soil bacterium Sinorhizobium meliloti, the chemotaxis system also plays an essential role in the interaction with its legume host. The chemotactic signaling cascade is initiated through interactions of an attractant or repellent compound with chemoreceptors or methyl-accepting chemotaxis proteins (MCPs). S. meliloti possesses eight chemoreceptors to mediate chemotaxis. Six of these receptors are transmembrane proteins with periplasmic ligand-binding domains (LBDs). The specific functions of McpW and McpZ are still unknown. Here, we report the crystal structure of the periplasmic domain of McpZ (McpZPD) at 2.7 Å resolution. McpZPD assumes a novel fold consisting of three concatenated four-helix bundle modules. Through phylogenetic analyses, we discovered that this helical tri-modular domain fold arose within the Rhizobiaceae family and is still evolving rapidly. The structure, offering a rare view of a ligand-free dimeric MCP-LBD, reveals a novel dimerization interface. Molecular dynamics calculations suggest ligand binding will induce conformational changes that result in large horizontal helix movements within the membrane-proximal domains of the McpZPD dimer that are accompanied by a 5 Å vertical shift of the terminal helix toward the inner cell membrane. These results suggest a mechanism of transmembrane signaling for this family of MCPs that entails both piston-type and scissoring movements. The predicted movements terminate in a conformation that closely mirrors those observed in related ligand-bound MCP-LBDs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号