Mass-Spec

Mass - Spec
  • 文章类型: Preprint
    核孔复合物(NPC)是核-细胞质运输的唯一介质。尽管在理解其保守的核心架构方面取得了巨大的进步,外围区域可以在物种内部和物种之间表现出相当大的差异。一种这样的结构是笼状核篮。尽管它在mRNA监测和染色质组织中起着至关重要的作用,对建筑的理解仍然难以捉摸。使用细胞内低温电子层析成像和层析图分析,我们探索了NPC的结构变异和跨真菌(酵母;酿酒酵母)的核篮,哺乳动物(小鼠;Musculus),和原生动物(T.gondii)。使用综合结构建模,我们计算了酵母和哺乳动物中篮的模型,该模型揭示了核环中Nups的中心如何与形成篮的Mlp/Tpr蛋白结合:Mlp/Tpr的卷曲螺旋结构域形成篮的支柱,虽然它们的非结构化末端构成了篮子的远端密度,在核质转运之前,它可能充当mRNA预处理的对接位点。
    The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket. Despite its crucial roles in mRNA surveillance and chromatin organization, an architectural understanding has remained elusive. Using in-cell cryo-electron tomography and subtomogram analysis, we explored the NPC\'s structural variations and the nuclear basket across fungi (yeast; S. cerevisiae), mammals (mouse; M. musculus), and protozoa (T. gondii). Using integrative structural modeling, we computed a model of the basket in yeast and mammals that revealed how a hub of Nups in the nuclear ring binds to basket-forming Mlp/Tpr proteins: the coiled-coil domains of Mlp/Tpr form the struts of the basket, while their unstructured termini constitute the basket distal densities, which potentially serve as a docking site for mRNA preprocessing before nucleocytoplasmic transport.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Within recent years, circular RNAs (circRNAs) have been an attractive new field of research in RNA biology and disease. Consequently, numerous studies have been published towards the disclosure of circRNA biogenesis and function. Initially, circRNAs were described as a subclass of cytoplasmic non-coding RNA, however, a few recent observations have proposed that circRNAs may instead be templates for protein production. The extent to which this is the case is currently debated, and therefore using rigorous data analysis and proper experimental setups is instrumental to settle the current controversies. Here, the conventional experiments used for detecting circRNA translation are outlined, and guidelines to distinguish signal from the inherent noise are discussed. While these guidelines are specific for circRNA translation, most also apply to other aspects of non-canonical translation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-ms) is a novel technique for studying endogenous ribonucleoprotein complexes. ChIRP-ms is robust across a wide range of expression level, from abundant housekeeping RNAs (e.g., spliceosomal U RNAs) to relatively lowly expressed RNAs (e.g., Xist). In vivo RNA-protein interactions are chemically cross-linked, and purified using biotinylated antisense oligonucleotides against RNA of interest. Coprecipitated proteins are gently eluted, and identified by mass-spectrometry (for discovery) or by western blotting (for validation).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    MBL-deficiency has been associated with an increased frequency and severity of infection, in particular in children and under immunocompromized conditions. In an open uncontrolled safety and pharmacokinetic MBL-substitution study using plasma-derived MBL (pdMBL) in MBL-deficient pediatric oncology patients, we found that despite MBL trough levels above 1.0μg/ml MBL functionality was not efficiently restored upon ex vivo testing. PdMBL showed C4-converting activity by itself, indicating the presence of MASPs. Upon incubation of pdMBL with MBL-deficient sera this C4-converting activity was significantly reduced. Depletion of the MASPs from pdMBL, paradoxically, restored the C4-converting activity. Subsequent depletion or inhibition of C1-inh, the major inhibitor of the lectin pathway, in the recipient serum restored the C4-converting activity as well. Complexes between MBL/MASPs and C1-inh (MMC-complexes) were detected after ex vivo substitution of MBL-deficient serum with pdMBL. These MMC-complexes could also be detected in the sera of the patients included in the MBL-substitution study shortly after pdMBL infusion. Altogether, we concluded that active MBL-MASP complexes in pdMBL directly interact with C1-inh in the recipient, leading to the formation of a multimolecular complex between C1-inh and MBL/MASPs, in contrast to the classical pathway where C1r and C1s are dissociated from C1q by C1-inh. Because of the presence of activated MASPs in the current pdMBL products efficient MBL-mediated host protection cannot be expected because of the neutralizing capacity by C1-inh.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号