Manganese-cobalt oxide

  • 文章类型: Journal Article
    甲醛(FA)是一种具有致癌倾向的有害室内空气污染物。在低温(DLT)下黑暗中FA的氧化是消除室内空气中FA的一种有前途的策略。在这种情况下,在碱性介质(0.1-5molL-1氢氧化钾)中合成并改性二元锰钴氧化物(0.1至5molL-1-MnCo2O4),用于在室温(RT)条件下进行FA氧化。因此,1-MnCo2O4在RT下实现100%FA转化率(50ppm和7022h-1气时空速(GHSV))。1-MnCo2O4的催化活性进一步评估为不同变量的函数(例如,催化剂质量,相对湿度,FA浓度,分子氧(O2)含量,流量,和时间在流)。原位漫反射红外傅里叶变换光谱证实,FA分子吸附到1-MnCo2O4的活性表面位点上,并通过二甲醛(DOM)和甲酸(HCOO-)氧化成水(H2O)和二氧化碳(CO2)作为反应中间体。根据密度泛函理论模拟,1-MnCo2O4的较高催化活性可归因于其优异的表面性能的综合作用(例如,FA分子的牢固附着,降低FA吸附的能源成本,和较低的CO2和H2O解吸能量)。这项工作是关于碱(KOH)改性的MnCo2O4的合成及其在黑暗中在室温下氧化去除FA的应用的第一份报告。这项研究的结果有望为DLT开发针对室内FA的有效且具有成本效益的非贵金属催化剂提供有价值的见解。
    Formaldehyde (FA) is a hazardous indoor air pollutant with carcinogenic propensity. Oxidation of FA in the dark at low temperature (DLT) is a promising strategy for its elimination from indoor air. In this light, binary manganese-cobalt oxide (0.1 to 5 mol L-1-MnCo2O4) is synthesized and modified in an alkaline medium (0.1-5 mol L-1 potassium hydroxide) for FA oxidation under room temperature (RT) conditions. Accordingly, 1-MnCo2O4 achieves 100 % FA conversion at RT (50 ppm and 7022 h-1 gas hourly space velocity (GHSV)). The catalytic activity of 1-MnCo2O4 is assessed further as a function of diverse variables (e.g., catalyst mass, relative humidity, FA concentration, molecular oxygen (O2) content, flow rate, and time on-stream). In situ diffuse reflectance infrared Fourier-transform spectroscopy confirms that FA molecules are adsorbed onto the active surface sites of 1-MnCo2O4 and oxidized into water (H2O) and carbon dioxide (CO2) through dioxymethylene (DOM) and formate (HCOO-) as the reaction intermediates. According to the density functional theory simulations, the higher catalytic activity of 1-MnCo2O4 can be attributed to the combined effects of its meritful surface properties (e.g., the firmer attachment of FA molecules, lower energy cost of FA adsorption, and lower desorption energy for CO2 and H2O). This work is the first report on the synthesis of alkali (KOH)-modified MnCo2O4 and its application toward the FA oxidative removal at RT in the dark. The results of this study are expected to provide valuable insights into the development of efficient and cost-effective non-noble metal catalysts against indoor FA at DLT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Mn增强的Co3O4催化剂(MnCoOx)通过简单的固相混合发泡方法制备,并通过原位加热增强形成尖晶石相混合氧化物物种,并研究了苯甲醇的选择性氧化反应,只是反应器中的空气作为氧供体。发现MnCoOx催化剂由相对最少的尖晶石MnCo2O4混合氧化物和块状Co3O4组成,形成MnCo2O4-Co3O4氧化物对。MnCo2O4-Co3O4氧化物对的微域呈现Mn3/Mn2和Co3/Co2的两个氧化还原对,而不是Co3O4中的Co3/Co2的单个氧化还原对,然后显着增强了空气中O2的超氧化物自由基(•O2-)物种的形成。这可以有效地引发苯甲醇在类似Fenton的过程中转化为苯甲醛。反应器中除空气外没有氧化剂,在MnCoOx催化剂中MnCo2O4和Co3O4之间的相互作用导致苯甲醇转化率高达98%,在大气压下苯甲醛选择性为100%,而单组分Co3O4只能提供37%的苯甲醇转化率。仅使用空气作为氧化剂的高效非均相选择性氧化的该实施方案提供了开发用于醇的低成本和超容易的自由基诱导选择性氧化方法的可能性。
    Mn reinforced Co3O4 catalysts (MnCoOx) were prepared by a facile solid phase mixed foaming method with an in-situ heating enhancement for the formation of spinel phase mixed oxide species, and studied in the selective oxidation of benzyl alcohol just the air in reactor as oxygen donor. It was found that the MnCoOx catalysts are composed of relatively minimal spinel MnCo2O4 mixed oxide and massive Co3O4 to form MnCo2O4-Co3O4 oxide pair. The micro-domains of MnCo2O4-Co3O4 oxide pair present two redox couples of Mn3+/Mn2+ and Co3+/Co2+ instead of the single one of Co3+/Co2+ in Co3O4, and then dramatically enhance the formation of superoxide radicals (•O2-) species from the O2 in air, which can efficiently initiate the conversion of benzyl alcohol to benzaldehyde in a Fenton-like processes. With no oxidant other than air in reactor, the interaction between MnCo2O4 and Co3O4 in MnCoOx catalysts leads to a benzyl alcohol conversion up to 98 % with a 100 % benzaldehyde selectivity at atmospheric pressure while single component Co3O4 can only present a benzyl alcohol conversion at 37 %. This embodiment of highly efficient heterogeneous selective oxidation just with air as oxidant provides a probability for developing a low-cost and super-facile radical-induced selective oxidation process for alcohols.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过控制煅烧Mn掺杂的沸石咪唑酯骨架ZIF-67前体(Co/Mn-ZIF),可以精确雕刻壳数高达3的多壳锰钴氧化物空心十二面体(Co/Mn-HD)。独特的多壳和多晶结构不仅提供了非常大的电化学活性表面积(EASA),同时也增强了材料的结构稳定性。最终结构中残留的C和N可能有助于稳定性并增加其电导率。当用于碱性充电电池时,三壳Co/Mn-HD具有较高的电化学性能,可逆容量(1Ag-1时为331.94mAhg-1),倍率性能(在电流密度增加20倍的情况下,可以保留88%的容量),和循环稳定性(在2000次循环中保持96%)。
    Precisely carving of multi-shelled manganese-cobalt oxide hollow dodecahedra (Co/Mn-HD) with shell number up to three is achieved by a controlled calcination of the Mn-doped zeolitic imidazolate framework ZIF-67 precursor (Co/Mn-ZIF). The unique multi-shelled and polycrystalline structure not only provides a very large electrochemically active surface area (EASA), but also enhances the structural stability of the material. The residual C and N in the final structures might aid stability and increase their conductivity. When used in alkaline rechargeable battery, the triple-shelled Co/Mn-HD exhibits high electrochemical performance, reversible capacity (331.94 mAh g-1 at 1 Ag-1 ), rate performance (88 % of the capacity can be retained with a 20-fold increase in current density), and cycling stability (96 % retention over 2000 cycles).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号