Manganese oxides

锰氧化物
  • 文章类型: Journal Article
    锰(Mn)污染对动物的健康构成严重威胁,植物,和人类。微生物介导的Mn(II)去除方法因其快速发展而受到广泛关注,效率高,和经济。Mn(II)-氧化细菌可以将有毒的可溶性Mn(II)氧化为无毒的Mn(III/IV)氧化物,可以进一步参与其他重金属和有机污染物的转化,在环境修复中起着至关重要的作用。本研究旨在使用CiteSpace对细菌Mn(II)氧化的研究论文进行文献计量分析,并探讨2008年至2023年该领域的研究热点和发展趋势。对筛选的469篇SCI研究论文进行了一系列可视化的知识图谱分析,作者群体及其国家和地区,期刊类别,出版机构,和关键词。中国,美国,和日本发表的关于细菌Mn(II)氧化研究的研究论文最多。细菌Mn(II)氧化的研究热点主要集中在Mn(II)氧化细菌的种类和分布,锰(Ⅱ)氧化的影响因素,Mn(II)氧化机理,以及它们在环境中的应用。此文献计量分析提供了全面的可视化知识图,以快速了解当前的进展,研究热点,以及细菌Mn(II)氧化的学术前沿。
    Manganese (Mn) pollution poses a serious threat to the health of animals, plants, and humans. The microbial-mediated Mn(II) removal method has received widespread attention because of its rapid growth, high efficiency, and economy. Mn(II)-oxidizing bacteria can oxidize toxic soluble Mn(II) into non-toxic Mn(III/IV) oxides, which can further participate in the transformation of other heavy metals and organic pollutants, playing a crucial role in environmental remediation. This study aims to conduct a bibliometric analysis of research papers on bacterial Mn(II) oxidation using CiteSpace, and to explore the research hotspots and developmental trends within this field between 2008 and 2023. A series of visualized knowledge map analyses were conducted with 469 screened SCI research papers regarding annual publication quantity, author groups and their countries and regions, journal categories, publishing institutions, and keywords. China, the USA, and Japan published the most significant number of research papers on the research of bacterial Mn(II) oxidation. Research hotspots of bacterial Mn(II) oxidation mainly focused on the species and distributions of Mn(II)-oxidizing bacteria, the influencing factors of Mn(II) oxidation, the mechanisms of Mn(II) oxidation, and their applications in environment. This bibliometric analysis provides a comprehensive visualized knowledge map to quickly understand the current advancements, research hotspots, and academic frontiers in bacterial Mn(II) oxidation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    锰氧化物(MnxOy)由于其高理论比容量而被认为是水性锌离子电池(AZIBs)的有前途的阴极材料,各种氧化态和晶相,和环境友好。然而,它们的实际应用受到它们固有的不良导电性的限制,结构恶化,和Jahn-Teller变形导致的锰溶解。为了解决这些问题,掺杂工程被认为是优化结构的有利改性策略,化学,和材料的组成,提高电化学性能。在这次审查中,系统总结了AZIB掺杂MnxOy基阴极的最新进展。本文综述的内容如下:(1)MnxOy基阴极的分类;(2)MnxOy基阴极的储能机理;(3)掺杂工程在MnxOy基阴极中的合成路线和作用;(4)AZIB掺杂MnxOy基阴极。最后,介绍了MnxOy基阴极和AZIB的发展趋势。
    Manganese oxides (MnxOy) are considered a promising cathode material for aqueous zinc-ion batteries (AZIBs) due to their high theoretical specific capacity, various oxidation states and crystal phases, and environmental friendliness. Nevertheless, their practical application is limited by their intrinsic poor conductivity, structural deterioration, and manganese dissolution resulting from Jahn-Teller distortion. To address these problems, doping engineering is thought to be a favorable modification strategy to optimize the structure, chemistry, and composition of the material and boost the electrochemical performance. In this review, the latest progress on doped MnxOy-based cathodes for AZIBs has been systematically summarized. The contents of this review are as follows: (1) the classification of MnxOy-based cathodes; (2) the energy storage mechanisms of MnxOy-based cathodes; (3) the synthesis route and role of doping engineering in MnxOy-based cathodes; and (4) the doped MnxOy-based cathodes for AZIBs. Finally, the development trends of MnxOy-based cathodes and AZIBs are described.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    氧化锰通过在自然水生生态系统中促进水相As(III)氧化和固定来降低砷(As)毒性。在厌氧的水-沉积物系统中,砷在液相中以游离状态存在,在铁(Fe)矿物上以吸附状态存在。然而,在该系统中,不同的锰氧化物对As命运的影响尚不清楚。因此,在这项研究中,我们构建了厌氧微生物As(V)还原环境,并研究了三种不同的锰氧化物在不同pH条件下对水相和针铁矿吸附As命运的影响。结果表明,δ-MnO2在水相中和固相中都具有优异的As(III)氧化能力,这不仅是由于较高的SSA,还有它起皱的结晶形态,对细菌减少不利的结构,有利于离子交换的结构,与α-MnO2和γ-MnO2相比,二次铁矿物的形成引起的干扰较小。关于水相As,δ-MnO2,α-MnO2和γ-MnO2需要碱性条件(pH9)才能表现出其最强的As(III)氧化和固定能力。对于针铁矿吸附的砷,在微生物还原条件下,所有锰氧化物在中性pH环境中的As固定效果最高,在碱性环境中的As氧化效果最强。这是因为在pH值为7时,Fe(II)和Mn(II)形成了水合络合物,这对As吸附更有利。在pH9时,针铁矿的带负电荷状态阻碍了As的吸附,但促进了锰氧化物对As的吸附和氧化。我们的研究为优化使用各种锰氧化物从水中去除As以及在不同pH条件下控制水-沉积物系统中As的动员提供了新的见解。
    Manganese oxides reduce arsenic (As) toxicity by promoting aqueous-phase As(III) oxidation and immobilization in natural aquatic ecosystems. In anaerobic water-sediment systems, arsenic exists both in a free state in the liquid phase and in an adsorbed state on iron (Fe) minerals. However, the influence of different manganese oxides on the fate of As in this system remains unclear. Therefore, in this study, we constructed an anaerobic microbial As(V) reduction environment and investigated the effects of three different manganese oxides on the fate of both aqueous-phase and goethite-adsorbed As under different pH conditions. The results showed that δ-MnO2 had a superior As(III) oxidation ability in both aqueous and solid phase due not only to the higher SSA, but also to its wrinkled crystalline morphology, less favorable structure for bacterial reduction, structure conducive to ion exchange, and less interference caused by the formation of secondary Fe-minerals compared to α-MnO2 and γ-MnO2. Regarding aqueous-phase As, δ-MnO2, α-MnO2, and γ-MnO2 required an alkaline condition (pH 9) to exhibit their strongest As(III) oxidation and immobilization capability. For goethite-adsorbed As, under microbial-reducing conditions, all manganese oxides had the highest As immobilization effect in neutral pH environments and the strongest As oxidation effect in alkaline environments. This was because at pH 7, Fe(II) and Mn(II) formed hydrated complexes, which was more favorable for As adsorption. At pH 9, the negatively charged state of goethite hindered As adsorption but promoted the adsorption and oxidation of As by the manganese oxides. Our research offers new insights for optimizing As removal from water using various manganese oxides and for controlling the mobilization of As in water-sediment system under different pH conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    锰(Mn)是一种具有多种氧化态和重要生物学意义的多功能过渡元素。基于Mn的纳米酶已经在各种应用中作为有前途的催化剂出现。然而,直接使用锰氧化物作为氧化酶模拟物仍然有限,需要进一步改进。在这项研究中,我们专注于羟基化锰(MnOOH),特别是层状形式的β-MnOOH,其表现出独特的电子和结构特征。通过水热方法合成了二维β-MnOOH纳米片,并显示出明显的氧化酶样活性。这些纳米片有效地转化了氧化酶底物,3,3\',5,5'-四甲基联苯胺(TMB),通过引发溶解氧转化为·O2-,1O2和·OH。然而,在存在L-半胱氨酸(L-Cys)的情况下,β-MnOOH的催化活性受到显著抑制,使L-Cys的高灵敏度检测。该传感策略已成功应用于基于智能手机的L-Cys测定,在Cys相关疾病的诊断中提供潜在的效用。层状β-MnOOH纳米片作为高活性氧化酶模拟物的探索为催化和生物医学应用开辟了新的可能性。
    Manganese (Mn) is a versatile transition element with diverse oxidation states and significant biological importance. Mn-based nanozymes have emerged as promising catalysts in various applications. However, the direct use of manganese oxides as oxidase mimics remains limited and requires further improvement. In this study, we focus on hydroxylated manganese (MnOOH), specifically the layered form β-MnOOH which exhibits unique electronic and structural characteristics. The two-dimensional β-MnOOH nanosheets were synthesized through a hydrothermal approach and showed remarkable oxidase-like activity. These nanosheets effectively converted the oxidase substrate, 3,3\',5,5\'-tetramethylbenzidine (TMB), into its oxidized form by initiating the conversion of dissolved oxygen into ·O2-, 1O2 and ·OH. However, in the presence of L-cysteine (L-Cys), the catalytic activity of β-MnOOH was significantly inhibited, enabling highly sensitive detection of L-Cys. This sensing strategy was successfully applied for smartphone-based L-Cys assay, offering potential utility in the diagnosis of Cys-related diseases. The exploration of layered β-MnOOH nanosheets as highly active oxidase mimics opens up new possibilities for catalytic and biomedical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    碳纳米纤维(CFs)由于电极与电解质的接触面积增大等特点,被广泛应用于储能装置的电极。缩短了电子的传输路径。然而,差的电化学活性和严重的空间浪费阻碍了它们作为超级电容器电极的进一步应用。在这项工作中,制备了MnO2-x纳米花受限和外延生长的进出碳纳米纤维(MnO2/MnO@CF)作为超级电容器的优异电极材料。通过独特设计的结构以及MnO和MnO2纳米花的引入,制备的互连MnO2/MnO@CF电极表现出令人满意的电化学性能。此外,MnO2/MnO@CF//活性炭(AC)非对称超级电容器具有出色的长期循环稳定性。此外,对MnO2/MnO@CF-90进行了动力学分析,并很好地揭示了扩散主导的存储机制。这种具有不同价态锰氧化物的“内部和外部同时装饰”的概念被证明可以改善碳纳米纤维的电化学性能,可推广到其他纤维基电极的制备和性能改进。
    Carbon nanofibers (CFs) have been widely applied as electrodes for energy storage devices owing to the features of increased contact area between electrodes and electrolyte, and shortened transmission route of electrons. However, the poor electrochemical activity and severe waste of space hinder their further application as supercapacitors electrodes. In this work, MnO2-x nanoflowers restricted and epitaxial growth in/out carbon nanofibers (MnO2/MnO@CF) were prepared as excellent electrode materials for supercapacitors. With the synergistic effect of uniquely designed structure and the introduction of MnO and MnO2 nanoflowers, the prepared interconnected MnO2/MnO@CF electrodes demonstrated satisfactory electrochemical performance. Furthermore, the MnO2/MnO@CF//activated carbon (AC) asymmetric supercapacitor offered an outstanding long-term cycle stability. Besides, kinetic analysis of MnO2/MnO@CF-90 was conducted and the diffusion-dominated storage mechanism was well-revealed. This concept of \"internal and external simultaneous decoration\" with different valence states of manganese oxides was proven to improve the electrochemical performance of carbon nanofibers, which could be generalized to the preparation and performance improvement of other fiber-based electrodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    量化固体中的锰(Mn)含量对于了解其在水生生态系统中的作用至关重要。土壤,水处理厂和分配系统。还没有研究使用标准Mn氧化物来比较文献中发现的许多消化方法的性能。使用四种具有不同氧化态的Mn氧化物比较了九种消化方法(包括USEPA3050B)。加热至至少40°C的HCl浓缩物(12.4M)提供了所有测试的Mn氧化物的定量消化,回收率为约100%。HCl浓度仅对MnO2消化很重要,而温度影响MnO和MnO2的回收率。完全恢复各种Al,Cu和Fe标准氧化物使用12.4MHCl在95°C下消化环境样品中Al的消解,Ca,Fe,使用HCl方法(除了Al),Mg和Mn含量产生较高的金属含量。HCl12.4M消化比科学文献中发现的其他消化方法提供更好的性能,因为它具有高还原能力。•文献中发现的大多数消化方法不能消化所有的Mn氧化态。•显示盐酸对于溶解Mn氧化物的所有氧化态至关重要。
    Quantifying manganese (Mn) content in solids is critical for understanding its roles in aquatic ecosystems, soils, water treatment plants and distribution systems. No studies have yet used standard Mn oxides to compare the performance of the numerous digestion methods found in the literature. Nine digestion methods (including USEPA 3050B) were compared using four Mn oxides with varying oxidation states. The HCl concentrate (12.4 M) heated to at least at 40 °C provided quantitative digestion of all Mn oxides tested with ≈ 100 % recovery. HCl concentration is important only for MnO2 digestion, while temperature influences both MnO and MnO2 recovery. Complete recovery of various Al, Cu and Fe standard oxides using a 12.4 M HCl digestion at 95 °C. Digestion of environmental samples for Al, Ca, Fe, Mg and Mn content yielded higher metal content using the HCl method (except for Al). HCl 12.4 M digestion provided better performance than other digestion methods found in the scientific literature because of its high reducing capacity. •Most digestion methods found in the literature do not digest all Mn oxidation states.•Hydrochloric acid is shown to be essential to dissolve all oxidation state of Mn oxides.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项研究使用了一种简单的机械球磨策略,以显着提高Mn2O3激活过乙酸(PAA)的能力,从而可持续且有效地降解有机微污染物(如双酚A,BPA)。在中性环境下,bm-Mn2O3在30分钟内通过PAA活化成功去除BPA并进行解毒。BPA降解动力学速率提高了3.4倍。在很宽的pH范围内仍然可以实现令人满意的BPA去除效率,在实际水中和bm-Mn2O3重复使用四个循环后。球磨后Mn2O3的亲水性变化显着提高了Mn2O3与PAA结合的亲和力,而粒径的减小暴露了更多的活性位点,部分有助于催化氧化。进一步分析表明,球磨机处理的Mn2O3(bm-Mn2O3)/PAA过程中的BPA氧化主要取决于bm-Mn2O3-PAA络合物(即,Mn(III)-OO(O)CCH3)介导的非自由基途径,而不是R-O·和Mn(IV)。尤其是,通过原位拉曼光谱和原位漫反射红外傅里叶变换光谱(DRIFTS)明确证实了Mn(III)-PAA配合物的存在。同时,密度泛函理论计算确定PAA易于吸附在锰位点上,从而有利于Mn(III)-OO(O)CCH3配合物的形成。这项研究促进了对氧化锰催化的PAA活化以微污染物的优异非自由基氧化的潜在机制的深入理解。
    This study used a simple mechanical ball milling strategy to significantly improve the ability of Mn2O3 to activate peracetic acid (PAA) for sustainable and efficient degradation of organic micropollutant (like bisphenol A, BPA). BPA was successfully removed and detoxified via PAA activation by the bm-Mn2O3 within 30 min under neutral environment, with the BPA degradation kinetic rate improved by 3.4 times. Satisfactory BPA removal efficiency can still be achieved over a wide pH range, in actual water and after reuse of bm-Mn2O3 for four cycles. The change in hydrophilicity of Mn2O3 after ball milling evidently elevated the affinity of Mn2O3 for binding to PAA, while the reduction in particle size exposed more active sites contributing partially to catalytic oxidation. Further analysis revealed that BPA oxidation in the ball mill-treated Mn2O3 (bm-Mn2O3)/PAA process mainly depends on the bm-Mn2O3-PAA complex (i.e., Mn(III)-OO(O)CCH3) mediated non-radical pathway rather than R-O• and Mn(IV). Especially, the existence of the Mn(III)-PAA complex was definitely verified by in situ Raman spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Simultaneously, density functional theory calculations determined that PAA adsorbs readily on manganese sites thereby favoring the formation of Mn(III)-OO(O)CCH3 complexes. This study advances an in-depth understanding of the underlying mechanisms involved in the manganese oxide-catalyzed activation of PAA for superior non-radical oxidation of micropollutants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    含铝沉积物在饮用水分配系统(DWDS)中普遍存在。然而,驱动溶解铝转化为管道沉积物的机制仍然难以捉摸。这项研究通过批量实验和使用实际成品水的长期管道实验研究了DWDS中溶解的Al积累。PVC管道实验表明,在碱性pH下,溶解的铝几乎不会沉积在干净的PVC管道壁上。然而,它可以基本上由覆盖有Mn和Fe沉积物的管道表面固定,所述Mn和Fe沉积物由Mn(II)氧化和Fe(III)沉淀形成。批量实验证实,合成的Mn和Fe氧化物在pH7.7和9.0时表现出很强的吸收溶解Al的能力(溶解的Al是主要形式)。管壁上的生物膜也增强了溶解的Al积累。铁管实验表明,具有丰富铁腐蚀产物的腐蚀铁管容易积聚铝。与氯化和氯胺化相比,非消毒条件更有利于颗粒铝在铁管表面的沉积,可能是由于生物膜固定铝。此外,铁管中铝的持续积累增加了铁向管道水的释放。这项研究强调了金属氧化物在富含Mn和Fe固体的DWDS中溶解的Al积累中的重要作用,这为矿床的形成和控制策略提供了新的见解。
    Aluminum-containing deposits are pervasive in drinking water distribution systems (DWDSs). However, the mechanisms driving dissolved Al transformation to pipe deposits remain elusive. This study investigated dissolved Al accumulation in DWDSs by batch experiments and long-term pipe experiments using actual finished water. PVC pipe experiments showed that dissolved Al hardly deposited on clean PVC pipe walls at alkaline pH. However, it could be substantially anchored by the pipe surface covered with Mn and Fe deposits formed from Mn(II) oxidation and Fe(III) precipitation. Batch experiments verified that the synthesized Mn and Fe oxides exhibited a strong capacity for dissolved Al uptake at pH 7.7 and 9.0 (dissolved Al was the dominant form). Biofilms on pipe walls also enhanced dissolved Al accumulation. Iron pipe experiments showed that corroded iron pipes with abundant iron corrosion products readily accumulated Al. Compared to chlorination and chloramination, non-disinfected conditions were more favorable for particulate Al deposition on iron pipe surface, probably due to Al immobilization by biofilms. In addition, continuous Al accumulation in iron pipes enhanced Fe release to pipe water. This study highlighted the important role of metal oxides in dissolved Al accumulation in DWDSs with abundant Mn and Fe solids, which provided new insights into deposit formation and control strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    δ-MnO2是一种有前途的阴极材料,用于水性铝离子电池(AAIB),因为其层状晶体结构具有较大的层间间距。然而,由于在高离子电位Al离子物种的嵌入过程中令人沮丧的结构崩溃,δ-MnO2阴极的优异Al离子存储性能仍然难以捉摸。这里,发现引入与氧键合时具有高键离解能的异质金属掺杂剂可以显着增强δ-MnO2骨架的结构稳定性。这种增强在AAIB中转化为稳定的循环性能和高的比容量。钒掺杂的δ-MnO2(V-δ-MnO2)可以在200mAg-1下提供518mAhg-1的高比容量,具有400次循环的显着循环稳定性和改善的倍率能力(468、339和285mAhg-1在0.5、1和2Ag-1下,分别),优于其他掺杂的δ-MnO2材料和报道的AAIB阴极。理论和实验研究表明,V掺杂可以大大提高δ-MnO2晶格的内聚能,增强它们与铝离子物种的相互作用,并增加导电性,共同有助于高离子存储性能。这些发现为开发用于电池应用的高性能阴极提供了灵感。
    δ-MnO2 is a promising cathode material for aqueous aluminium-ion batteries (AAIBs) for its layered crystalline structure with large interlayer spacing. However, the excellent Al ion storage performance of δ-MnO2 cathode remains elusive due to the frustrating structural collapse during the intercalation of high ionic potential Al ion species. Here, it is discovered that introducing heterogeneous metal dopants with high bond dissociation energy when bonded to oxygen can significantly reinforce the structural stability of δ-MnO2 frameworks. This reinforcement translates to stable cycling properties and high specific capacity in AAIBs. Vanadium-doped δ-MnO2 (V-δ-MnO2) can deliver a high specific capacity of 518 mAh g-1 at 200 mA g-1 with remarkable cycling stability for 400 cycles and improved rate capabilities (468, 339, and 285 mAh g-1 at 0.5, 1, and 2 A g-1, respectively), outperforming other doped δ-MnO2 materials and the reported AAIB cathodes. Theoretical and experimental studies indicate that V doping can substantially improve the cohesive energy of δ-MnO2 lattices, enhance their interaction with Al ion species, and increase electrical conductivity, collectively contributing to high ion storage performance. These findings provide inspiration for the development of high-performance cathodes for battery applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人类活动强度的增加导致了严重的环境挑战:广泛的金属污染。锰(Mn)氧化物已成为潜在的天然清除剂,在金属元素的生物地球化学循环中发挥关键作用。先前的审查侧重于综合,表征,和锰氧化物的吸附动力学,以及特定层状锰氧化物的转化途径。这篇综述对锰氧化物在危险金属上的分子水平吸附和氧化机理进行了细致的研究,包括吸附模式,协调,吸附位点,和氧化还原过程。我们还对这两个内部因素(表面积,结晶度锰氧化物中的八面体空位含量,和反应物浓度)和外部因素(pH,掺杂或预吸附金属离子的存在)影响Mn氧化物对金属的吸附/氧化。此外,我们发现了在理解这些机制方面存在的差距,并提出了未来研究的途径.我们的目标是在微观结构水平上增强对Mn氧化物在金属元素易位和转变中的调节作用的认识,为开发有效的金属吸附剂和污染控制策略提供框架。
    The increasing intensity of human activities has led to a critical environmental challenge: widespread metal pollution. Manganese (Mn) oxides have emerged as potentially natural scavengers that perform crucial functions in the biogeochemical cycling of metal elements. Prior reviews have focused on the synthesis, characterization, and adsorption kinetics of Mn oxides, along with the transformation pathways of specific layered Mn oxides. This review conducts a meticulous investigation of the molecular-level adsorption and oxidation mechanisms of Mn oxides on hazardous metals, including adsorption patterns, coordination, adsorption sites, and redox processes. We also provide a comprehensive discussion of both internal factors (surface area, crystallinity, octahedral vacancy content in Mn oxides, and reactant concentration) and external factors (pH, presence of doped or pre-adsorbed metal ions) affecting the adsorption/oxidation of metals by Mn oxides. Additionally, we identify existing gaps in understanding these mechanisms and suggest avenues for future research. Our goal is to enhance knowledge of Mn oxides\' regulatory roles in metal element translocation and transformation at the microstructure level, offering a framework for developing effective metal adsorbents and pollution control strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号