Macrophage phenotypes

  • 文章类型: Journal Article
    巨噬细胞是一种免疫细胞,具有多种功能,包括吞噬病原体,抗原呈递和组织重塑。为了履行他们在功能上不同的角色,巨噬细胞经历向一系列表型的极化,特别是经典激活(M1)和交替激活(M2)亚型。然而,二元M1/M2表型未能在体内捕获巨噬细胞亚群的复杂性。因此,采用时空成像技术来可视化巨噬细胞表型和极化是至关重要的,能够监测疾病进展和评估对候选药物的治疗反应。这篇评论首先讨论了起源,巨噬细胞在生理和病理条件下的功能和多样性。随后,我们总结了已鉴定的巨噬细胞表型及其特异性生物标志物.此外,我们提出了通过在体内观察具有特定表型的巨噬细胞来定位病变的成像探针。最后,我们讨论了通过巨噬细胞表型成像监测免疫微环境和疾病进展的挑战和前景.
    Macrophage is a kind of immune cell and performs multiple functions including pathogen phagocytosis, antigen presentation and tissue remodeling. To fulfill their functionally distinct roles, macrophages undergo polarization towards a spectrum of phenotypes, particularly the classically activated (M1) and alternatively activated (M2) subtypes. However, the binary M1/M2 phenotype fails to capture the complexity of macrophages subpopulations in vivo. Hence, it is crucial to employ spatiotemporal imaging techniques to visualize macrophage phenotypes and polarization, enabling the monitoring of disease progression and assessment of therapeutic responses to drug candidates. This review begins by discussing the origin, function and diversity of macrophage under physiological and pathological conditions. Subsequently, we summarize the identified macrophage phenotypes and their specific biomarkers. In addition, we present the imaging probes locating the lesions by visualizing macrophages with specific phenotype in vivo. Finally, we discuss the challenges and prospects associated with monitoring immune microenvironment and disease progression through imaging of macrophage phenotypes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Alcohol-associated liver disease (ALD) is a condition that develops due to prolonged and excessive alcohol consumption. It encompasses various stages of liver damage, including fatty liver, alcoholic hepatitis, and cirrhosis. Immune cells, particularly macrophages, of various types play a significant role in the onset and progression of the disease. Macrophages observed in the liver exhibit diverse differentiation forms, and perform a range of functions. Beyond M1 and M2 macrophages, human macrophages can polarize into distinct phenotypes in response to various stimuli. Recent advancements have improved our understanding of macrophage diversity and their role in the progression of ALD. This mini-review provides a concise overview of the latest findings on the role and differentiation of macrophages in ALD. Additionally, it discusses potential therapeutic targets associated with macrophages and explores potential therapeutic strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Video-Audio Media
    心脏是一个肌肉器官,将血液泵入全身,是人体最重要的器官之一。虽然心肌细胞对于维持心脏的正常功能至关重要,各种心血管疾病,如冠状动脉闭塞,心律失常,心肌炎会导致心肌细胞死亡,导致心脏功能恶化。成年哺乳动物心脏在心脏损伤后不能再生足够的心肌细胞,最终导致心力衰竭和死亡。心脏巨噬细胞普遍分布在健康心脏中并在损伤部位积累。巨噬细胞在调节心肌细胞的稳态和增殖中起着重要作用,促进电传导,并通过直接和间接的细胞-细胞串扰去除死亡的心肌细胞和碎片。在这次审查中,我们总结了在健康和损伤情况下巨噬细胞在维持心脏稳态和巨噬细胞-心肌细胞串扰中的作用的最新见解.视频摘要。
    The heart is a muscular organ that pumps blood throughout the body and is one of the most vital organs in human body. While cardiomyocytes are essential for maintaining the normal function of the heart, a variety of cardiovascular diseases such as coronary artery occlusion, arrhythmia, and myocarditis can lead to cardiomyocyte death, resulting in deterioration of heart function. The adult mammalian heart is incapable of regenerating sufficient cardiomyocytes following cardiac injuries, eventually leading to heart failure and death. Cardiac macrophages are ubiquitously distributed in the healthy heart and accumulated at the site of injury. Macrophages play essential roles in regulating homeostasis and proliferation of cardiomyocyte, promoting electrical conduction, and removing dead cardiomyocytes and debris through direct and indirect cell-cell crosstalk. In this review, we summarize the latest insights into the role of macrophages in maintaining cardiac homeostasis and the macrophage-cardiomyocyte crosstalk in both healthy and injured scenarios. Video Abstract.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    巨噬细胞执行多种功能,如病原体吞噬,通过向表型谱极化来进行抗原呈递和组织重塑。巨噬细胞表型的动态成像对于评估疾病进展和候选药物的治疗反应至关重要。然而,目前的技术无法在体内识别巨噬细胞表型。这里,我们开发了一种表面增强拉曼散射(SERS)纳米探针,AH1,其使得能够通过比率拉曼信号以高灵敏度和组织穿透深度准确地测定生理pH。由于表型依赖性代谢重编程,AH1可以通过测量吞噬体中的酸度水平来有效地识别巨噬细胞亚群。静脉给药后,AH1不仅可视化小鼠模型脑肿瘤和癫痫区巨噬细胞表型的空间分布,而且还揭示了药物干预后脑病变中巨噬细胞的复极化。这项工作提供了一种动态监测疾病相关免疫微环境和评估体内免疫治疗效果的新工具。本文受版权保护。保留所有权利。
    Macrophage performs multiple functions such as pathogen phagocytosis, antigen presentation, and tissue remodeling by polarizing toward a spectrum of phenotypes. Dynamic imaging of macrophage phenotypes is critical for evaluating disease progression and the therapeutic response of drug candidates. However, current technologies cannot identify macrophage phenotypes in vivo. Herein, a surface-enhanced Raman scattering nanoprobe, AH1, which enables the accurate determination of physiological pH with high sensitivity and tissue penetration depth through ratiometric Raman signals is developed. Due to the phenotype-dependent metabolic reprogramming, AH1 can effectively identify macrophage subpopulations by measuring the acidity levels in phagosomes. After intravenous administration, AH1 not only visualizes the spatial distribution of macrophage phenotypes in brain tumors and epileptic regions of mouse models, but also reveals the repolarization of macrophages in brain lesions after drug intervention. This work provides a new tool for dynamically monitoring the disease-associated immune microenvironment and evaluating the efficacy of immune-therapeutics in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    呼吸道合胞病毒(RSV)是全球儿童病毒性细支气管炎的最常见原因,目前还没有针对RSV疾病的疫苗。这项研究调查了在体外和体内存在RSV感染的情况下,立方体和球形氧化铈纳米颗粒(CNP)调节活性氧(ROS)和氮(RNS)物种和免疫细胞表型的潜力。通过水热和超声方法合成了立方体和球形CNP,分别。物理化学表征证实了球形和立方体CNP的形状以及各种参数对其粒度分布和ζ电位的影响。体外结果表明,球形和立方体CNP差异调节J774巨噬细胞中的ROS和RNS水平。具体来说,立方体CNP显着降低RSV诱导的ROS水平而不影响RNS水平,而球体CNP增加RSV诱导的RNS水平,对ROS水平的影响最小。CubeCNP通过增加CD80和CD86的巨噬细胞表面表达并伴随TNFα和IL-12p70的增加,同时降低M2CD206表达,在体外驱动了RSV感染的巨噬细胞的M1表型。在BALB/c小鼠中,鼻内施用球体和立方体-CNP是良好耐受的,没有观察到毒性。值得注意的是,立方CNP优先积累在鼠肺泡巨噬细胞中并诱导其激活,避免其他炎症细胞如嗜中性粒细胞的摄取和活化增强,与RSV介导的炎症相关。总之,我们报道了球形和立方体CNP在RSV感染期间调节巨噬细胞极化和先天细胞反应。
    Respiratory syncytial virus (RSV) is the most common cause of viral bronchiolitis among children worldwide, yet there is no vaccine for RSV disease. This study investigates the potential of cube and sphere-shaped cerium oxide nanoparticles (CNP) to modulate reactive oxygen (ROS) and nitrogen (RNS) species and immune cell phenotypes in the presence of RSV infection in vitro and in vivo. Cube and sphere-shaped CNP were synthesized by hydrothermal and ultrasonication methods, respectively. Physico-chemical characterization confirmed the shape of sphere and cube CNP and effect of various parameters on their particle size distribution and zeta potential. In vitro results revealed that sphere and cube CNP differentially modulated ROS and RNS levels in J774 macrophages. Specifically, cube CNP significantly reduced RSV-induced ROS levels without affecting RNS levels while sphere CNP increased RSV-induced RNS levels with minimal effect on ROS levels. Cube CNP drove an M1 phenotype in RSV-infected macrophages in vitro by increasing macrophage surface expression of CD80 and CD86 with a concomitant increase in TNFα and IL-12p70, while simultaneously decreasing M2 CD206 expression. Intranasal administration of sphere and cube-CNP were well-tolerated with no observed toxicity in BALB/c mice. Notably, cube CNP preferentially accumulated in murine alveolar macrophages and induced their activation, avoiding enhanced uptake and activation of other inflammatory cells such as neutrophils, which are associated with RSV-mediated inflammation. In conclusion, we report that sphere and cube CNP modulate macrophage polarization and innate cellular responses during RSV infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    心脏纤维化是高血压心脏重塑的关键特征。为了响应微环境刺激,巨噬细胞的表型和功能变化被认为是心脏纤维化减弱的重要决定因素。VO-OHpic,10号染色体(PTEN)抑制剂的磷酸酶和张力同源物,已被证明在心脏重塑中具有心脏保护作用。然而,VO-OHpic是否能改善心脏纤维化和巨噬细胞极化仍然难以捉摸。在体内自发性高血压大鼠和体外AngII诱导的高血压模型中研究了VO-OHpic与巨噬细胞表型之间减轻心脏纤维化的相互作用。体外实验表明,VO-OHpic促进M2巨噬细胞极化,显著抑制促炎M1巨噬细胞,而VO-OHpic治疗蛋白激酶B(AKT)敲低/LY294002(PI3K抑制剂)巨噬细胞的作用降低。在共培养系统中,用VO-OHpic处理的巨噬细胞培养心脏成纤维细胞导致增殖的显著抑制,纤维化标志物表达,转化生长因子(TGF)-β和Smad2/3蛋白表达。一起来看,VO-OHpic通过磷脂酰肌醇3-激酶(PI3K)/AKT/TGF-β/Smad2/3途径介导了纤维保护作用并增加了M2巨噬细胞极化。
    Cardiac fibrosis is a key feature of hypertensive cardiac remodeling. In response to microenvironmental stimuli, phenotypic and functional changes in macrophages are considered important determinants of cardiac fibrosis attenuation. VO-OHpic, a phosphatase and tension homolog of chromosome 10 (PTEN) inhibitor, has been demonstrated to be cardioprotective in cardiac remodeling. However, whether VO-OHpic can improve cardiac fibrosis and macrophage polarization remains elusive. The interaction between VO-OHpic and the macrophage phenotype to attenuate cardiac fibrosis was studied in both spontaneously hypertensive rats in vivo and an Ang II-induced hypertension model in vitro. In vitro experiments showed that VO-OHpic promoted M2 macrophage polarization and markedly inhibited proinflammatory M1 macrophages, while VO-OHpic treatment of protein kinase B (AKT)-knockdown/LY294002 (a PI3K inhibitor) macrophages exerted a reduced effect. In a coculture system, culturing cardiac fibroblasts with VO-OHpic-treated macrophages led to significant suppression of proliferation, fibrotic marker expression, and transforming growth factor (TGF)-β and Smad 2/3 protein expression. Taken together, VO-OHpic mediated a fibro-protective effect and increased M2 macrophage polarization via the phosphatidylinositol 3-kinase (PI3K)/AKT/TGF-β/Smad2/3 pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Of central importance to tissue engineering and drug delivery is identifying polymer parameters that increase or decrease specific cytokines in response to biomaterials. In this study, we have interrogated the effects of material descriptors and material characteristics on pro-inflammatory, pro-angiogenic, and naïve macrophages using polymeric particles (∼600 nm), functionalized with 13 different moieties. We characterized tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) secretion for the three macrophage populations and used the quantitative structure-activity relationship method (QSAR) to accurately predict cytokine secretion for the different macrophage phenotypes. The findings presented here demonstrate that altering cellular responses to polymers can be achieved through exploiting material parameters. For pro-inflammatory macrophages, polarity and the ability to hydrogen bond appear to significantly impact TNF-α secretion while charge impacted pro-angiogenic macrophages. Naïve cells were impacted by charge in a similar manner as the pro-angiogenic cells; however, hydrophilicity also increased TNF-α secretion in these cells. For IL-10 secretion, hydrogen bonding was very negatively correlated with pro-inflammatory cells, whereas it was positively correlated with pro-angiogenic cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Macrophages are key players in the progression of many diseases, ranging from rheumatoid arthritis to cancer. Drug delivery systems have the potential not only to transport payloads to diseased tissue but also to influence cell behavior. Here, poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAm-co-AAc) microparticles were modified with 14 different arginine derivatives. These particles were then incubated with interleukin-4 or lipopolysaccharide-stimulated macrophages or naïve macrophages (RAW 264.7). The phenotypic state of the macrophages was assessed by measuring arginase activity, tumor necrosis factor-α (TNF-α) secretion, and nitrite production. Partial least-squares analysis revealed material properties and descriptors that shifted the macrophage phenotype for the three cell conditions in this study. Material descriptors relating to secondary bonding were suggested to play a role in shifting phenotypes in all three macrophage culture conditions. These findings suggest that macrophage responses could be altered through drug delivery vehicles, and this method could be employed to assist in screening potential candidates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Titanium surface mediated immunomodulation may address compromised post-implantation bone healing in diabetes mellitus. To assess in vitro phenotypic changes, M1 and M2 polarised Type 2 diabetic rat (Goto Kakizaki, GK) macrophages were cultured on micro-rough (SLA) or hydrophilic nanostructured SLA (modSLA) titanium. The in vivo effects of the SLA and modSLA surfaces on macrophage phenotype, wound-associated protein expression and bone formation were investigated using a critical-sized calvarial defect model. Compared to healthy macrophages, GK M2 macrophage function was compromised, secreting significantly lower levels of the anti-inflammatory cytokine IL-10. The modSLA surface attenuated the pro-inflammatory cellular environment, reducing pro-inflammatory cytokine production and promoting M2 macrophage phenotype differentiation. ModSLA also suppressed gene expression associated with macrophage multinucleation and giant cell formation and stimulated pro-osteogenic genes in co-cultured osteoblasts. In vivo, modSLA enhanced osteogenesis compared to SLA in GK rats. During early healing, proteomic analysis of both surface adherent and wound exudate material showed that modSLA promoted an immunomodulatory pro-reparative environment. The modSLA surface therefore successfully compensated for the compromised M2 macrophage function in Type 2 diabetes by attenuating the pro-inflammatory response and promoting M2 macrophage activity, thus restoring macrophage homeostasis and resulting in a cellular environment favourable for enhanced osseous healing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号