MXene

MXene
  • 文章类型: Journal Article
    人类在操纵期间依靠由皮肤的触觉捕获的多维力特征来识别和操纵对象。由于当前集成在机器人中的传感器无法支持机器人感知机械手与物体之间的多种交互状态,实现类似人类的感知和分析能力仍然是服务机器人的主要挑战。受机器人执行复杂任务所涉及的触觉感知的推动,提出了一种多模态触觉感觉系统,为机器人接近时提供原位同步感知,触摸,和操纵对象。该系统包括具有1.11E-2pFmm-1高灵敏度的电容传感器,具有30ms的快速响应速度的摩擦电纳米发电机,以及能够进行3D力检测的压力传感器阵列。通过结合迁移学习模型,融合多模态触觉信息,在随机抽样条件下实现对随机硬度、纹理信息等多特征目标的高精度(高达95%)识别,包括随机抓取力和速度。当在未定义的周围环境中执行复杂任务时,该感觉系统有望增强自主机器人的智能识别和行为规划能力。
    Humans recognize and manipulate objects relying on the multidimensional force features captured by the tactile sense of skin during the manipulation. Since the current sensors integrated in robots cannot support the robots to sense the multiple interaction states between manipulator and objects, achieving human-like perception and analytical capabilities remains a major challenge for service robots. Prompted by the tactile perception involved in robots performing complex tasks, a multimodal tactile sensory system is presented to provide in situ simultaneous sensing for robots when approaching, touching, and manipulating objects. The system comprises a capacitive sensor owning the high sensitivity of 1.11E-2 pF mm-1, a triboelectricity nanogenerator with the fast response speed of 30 ms, and a pressure sensor array capable of 3D force detection. By Combining transfer learning models, which fuses multimodal tactile information to achieve high-precision (up to 95%) recognition of the multi-featured targets such as random hardness and texture information under random sampling conditions, including random grasp force and velocity. This sensory system is expected to enhance the intelligent recognition and behavior-planning capabilities of autonomous robots when performing complex tasks in undefined surrounding environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有治疗和光疗潜力的新材料的开发以及对外部刺激的接受度一直在激发肿瘤学研究。在这里,已经合成并修饰了基于碳化钛的MXene量子点(FHMQDs),以利用对乳腺癌细胞的刺激响应行为和靶标特异性。尺寸约为3纳米,开发的FHMQD在约460nm处表现出高荧光发射。阿霉素(DOX)的包封率为90%,当遇到酸性pH(5.4)时,开发的系统还提供了快速的DOX释放行为。Further,在MDA-MB231乳腺癌细胞上开发的FHMQD的体外评估对癌细胞表现出优异的靶特异性,这通过其对癌细胞的高细胞毒性来反映。此外,由于过度的活性氧(ROS)生成能力以及FHMQD在癌细胞中的凋亡促进能力,FHMQD的出色光动力效率证明了癌症治疗中的协同方法。令人鼓舞的是,制造的FHMQD还表现出荧光标记和生物成像能力,这使其成为一个令人难以置信的平台,确保乳腺癌研究的卓越治疗。
    Advancement in the development of new materials with theranostic and phototherapeutic potential along with receptiveness to external stimuli has been persistently inspiring oncology research. Herein, titanium carbide-based MXene quantum dots (FHMQDs) have been synthesized and modified to take advantage of stimuli-responsive behavior and target specificity for breast cancer cells. With a size of around 3 nm, the developed FHMQDs demonstrate high fluorescent emission at around 460 nm. With ∼90 % encapsulation efficiency of doxorubicin (DOX), the developed system also offers rapid DOX release behavior when encountering an acidic pH (5.4). Further, the in vitro assessment of the developed FHMQDs on MDA-MB 231 breast cancer cells presents excellent target specificity to cancer cells which was reflected by its high cytotoxicity against cancer cells. Additionally, the outstanding photodynamic efficiency of FHMQDs due to excessive Reactive Oxygen Species (ROS) generating ability along with apoptosis promoting capability of FHMQDs in cancer cells demonstrates a synergistic approach in cancer theranostics. Encouragingly, the fabricated FHMQDs also exhibited fluorescent labelling and bioimaging capacity which makes it an incredible platform that ensures theranostic excellence in breast cancer research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于MXene的膜,作为一种改性膜,具有独特的结构,吸引水处理的注意力,但遭受低的水通量。为了解决这个问题,用UiO-66-NH2纳米颗粒操纵MXene以产生UiO-66-NH2@MXene2D-纳米复合材料用于PES膜的改性。在这里,我们合成了一种新型的基于MXene的改性PES膜。MXene,UiO-66-NH2和UiO-66-NH2@MXene使用傅里叶变换红外评估,X射线衍射图,X射线光电子能谱,和zeta电位分析。场发射扫描电子显微镜用于评估MXene基材料和制备的膜,并使用原子力显微镜研究了所制备膜的表面形貌。0.25wt%改性剂改性的膜不仅能够去除72%和81%的亚甲基蓝和结晶紫阳离子染料,但也记录了超过91%的甲基蓝拒绝率,甲基橙,酸融合,和刚果红阴离子染料。使用相同的膜,91%的盐排斥率,87%,79%,对于Na2SO4、MgSO4、MgCl2和NaCl,分别。在用0.25wt%的新型纳米复合材料改性剂改性的膜中,水通量也增加了4倍以上。与原始PES膜相比,0.5wt%的膜的水接触角从65º降低到38º。此外,在引入的UiO-66-NH2@MXene纳米复合改性剂改性的膜中,防污性能得到了显着改善。
    MXene-based membranes, as a type of modified membrane, have unique structures that attract attention for water treatment but suffer from low water flux. To address this, MXene was manipulated with UiO-66-NH2 nanoparticles to create UiO-66-NH2@MXene 2D-nanocomposites for the modification of the PES membrane. Herein, we synthesized a novel modified MXene-based PES membrane. The MXene, UiO-66-NH2, and UiO-66-NH2@MXene were assessed using the Fourier transform infrared, X-ray diffraction pattern, X-ray photoelectron spectroscopy, and zeta potential analysis. Field emission scanning electron microscopy was used to evaluate the MXene-based materials and prepared membranes, and the surface topography of the fabricated membranes was studied using atomic force microscopy. The membrane modified by 0.25 wt% of modifier was able to not only remove 72% and 81% of methylene blue and crystal violet cationic dyes, but also recorded more than 91% rejections for methyl blue, methyl orange, acid fusion, and Congo red anionic dyes. Using the same membrane, salt rejections of 91%, 87%, 79%, and 62% were achieved for Na2SO4, MgSO4, MgCl2, and NaCl, respectively. Water flux was also increased by more than 4 times in the membrane modified with 0.25 wt% of the novel nanocomposite modifier, and the water contact angle of the membrane with 0.5 wt% decreased from 65˚ to 38˚ compared to the pristine PES membrane. Besides, the anti-fouling properties were exceptionally improved in the membranes modified by the introduced UiO-66-NH2@MXene nanocomposite modifier.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    膀胱组织工程为修复先天性和获得性疾病引起的缺损提供了巨大的潜力。然而,工程移植物的有效性通常受到血管形成和神经再生不足的限制。这项研究利用了四种主要的生物材料-明胶甲基丙烯酰(GelMA),几丁质纳米晶体(ChiNC),碳化钛(MXene),和脂肪干细胞(ADSC)-配制两种类型的生物墨水,GCM0.2和GCM0.2-ADSC,在指定的比例。将这些生物墨水3D打印到膀胱无细胞基质(BAM)贴片上,以创建BAM-GCM0.2和BAM-GCM0.2-ADSC贴片。对BAM-GCM0.2-ADSC补片进行电刺激以产生GCM0.2-ADSC-ES膀胱补片。用于修复大鼠膀胱缺损,这些补丁是针对对照组进行评估的,行膀胱部分切除术,然后直接缝合。我们的发现表明,包含ADSC和电刺激显着增强大鼠膀胱平滑肌的再生(从[24.052±2.782]%到[57.380±4.017]%),血管(从[5.326±0.703]%到[12.723±1.440]%),和神经(从[0.227±0.017]%到[1.369±0.218]%)。这项研究强调了GCM0.2-ADSC-ES贴片的出色膀胱修复能力,并为膀胱缺损修复开辟了新途径。
    Bladder tissue engineering offers significant potential for repairing defects resulting from congenital and acquired conditions. However, the effectiveness of engineered grafts is often constrained by insufficient vascularization and neural regeneration. This study utilized four primary biomaterials─gelatin methacryloyl (GelMA), chitin nanocrystals (ChiNC), titanium carbide (MXene), and adipose-derived stem cells (ADSC)─to formulate two types of bioinks, GCM0.2 and GCM0.2-ADSC, in specified proportions. These bioinks were 3D printed onto bladder acellular matrix (BAM) patches to create BAM-GCM0.2 and BAM-GCM0.2-ADSC patches. The BAM-GCM0.2-ADSC patches underwent electrical stimulation to yield GCM0.2-ADSC-ES bladder patches. Employed for the repair of rat bladder defects, these patches were evaluated against a Control group, which underwent partial cystectomy followed by direct suturing. Our findings indicate that the inclusion of ADSC and electrical stimulation significantly enhances the regeneration of rat bladder smooth muscle (from [24.052 ± 2.782] % to [57.380 ± 4.017] %), blood vessels (from [5.326 ± 0.703] % to [12.723 ± 1.440] %), and nerves (from [0.227 ± 0.017] % to [1.369 ± 0.218] %). This research underscores the superior bladder repair capabilities of the GCM0.2-ADSC-ES patch and opens new pathways for bladder defect repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    丝素蛋白(SF),一种天然的生物可降解和生物相容性蛋白质,由于其令人印象深刻的特性,在生物医学应用中获得了极大的关注,包括优异的生物相容性,生物降解性,和机械弹性。然而,由于机械强度和导电性不足,其广泛使用面临障碍。为了解决这些限制,最近的研究集中在将SF与尖端纳米材料如MXene和碳基材料相结合。本文综述了丝素蛋白-MXene/碳基纳米复合材料在生物医学领域的应用和潜力。SF的独特属性,MXene,探索碳基材料,强调它们的组合如何增强机械强度,电导率,和生物相容性。通过利用MXene和含碳元素的优异导电性和机械性能,这些复合材料在几种生物医学应用中显示出显著的性能增强。通过批判性地讨论组织工程等关键应用,突出了这些纳米复合材料的创新潜力。药物输送,和生物传感。此外,这项工作讨论了最新的研究进展,困难,以及该行业的未来前景,为可能的突破和用途提供有价值的见解。这篇综述旨在全面分析医疗保健中丝素蛋白-MXene/碳基纳米复合材料的现有信息。
    Silk fibroin (SF), a natural biodegradable and biocompatible protein, has garnered significant attention in biomedical applications due to its impressive properties, including excellent biocompatibility, biodegradability, and mechanical resilience. Nevertheless, its broader usage faces obstacles by its insufficient mechanical strength and electrical conductivity. In order to address these constraints, recent studies have concentrated on combining SF with cutting-edge nanomaterials like MXene and carbon-based materials. This review comprehensively examines the applications and potential of silk fibroin-MXene/carbon-based nanocomposites in biomedical fields. The unique properties of SF, MXene, and carbon-based materials are explored, emphasizing how their combination enhances mechanical strength, conductivity, and biocompatibility. These composites show substantial enhancements in performance for several biomedical applications by utilising the excellent conductivity and mechanical capabilities of MXene and carbonaceous elements. The innovative potential of these nanocomposites is highlighted by critically discussing key applications such as tissue engineering, drug delivery, and biosensing. In addition, the work discusses the latest research progress, difficulties, and future prospects in the sector, providing valuable insights into possible breakthroughs and uses. This review seeks to comprehensively analyse the existing information on silk fibroin-MXene/carbon based nanocomposites in healthcare.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Mo2CTxMXene材料,以其高导电性和丰富的表面官能团而闻名,被广泛用作超级电容器的电极材料。然而,它们在电化学储能过程中的堆叠倾向阻碍了它们的性能。纳米棒状Ni的原位生长,Co双金属金属有机骨架(Ni,Co-MOF)在Mo2CTxMXene上有效地减轻了这种堆叠。它们的多孔结构和高比表面积,MOFs在储能方面表现出色,双金属MOFs的性能优于单金属MOFs。Mo2CTxMXene与Ni的协同作用,Co-MOF业绩突出。在1MKOH的三电极系统中,Mo2CTx/Ni,Co-MOF复合材料在1Ag-1下显示58mAhg-1(56.26mAhcm-3)的比电容。当用于Mo2CTx/Ni时,Co-MOF//AC非对称超级电容器,在293Wkg-1(0.284Wcm-3)的功率密度下,它的能量密度为22.7Whkg-1(0.022Whcm-3)。未来的工作将集中在加强合成方法,探索不同的双金属组合,优化气体传感器的电极设计,电池,燃料电池,生物传感器,等等,具有出色的性能和可持续性。
    Mo2CTx MXene materials, known for their high conductivity and abundant surface functional groups, are widely utilized as electrode materials in supercapacitors. However, their tendency to stack during electrochemical energy storage hinders their performance. The in situ growth of nanorod-shaped Ni,Co bimetallic metal-organic frameworks (Ni,Co-MOF) on Mo2CTx MXene effectively mitigates this stacking. With their porous structure and high specific surface area, MOFs excel in energy storage, and bimetallic MOFs outperform monometallic ones. The synergy between Mo2CTx MXene and Ni,Co-MOF yields an outstanding performance. In a three-electrode system with 1 M KOH, the Mo2CTx/Ni,Co-MOF composite shows a specific capacitance of 58 mAh g-1 (56.26 mAh cm-3) at 1 A g-1. When used in a Mo2CTx/Ni,Co-MOF//AC asymmetric supercapacitor, it achieves an energy density of 22.7 Wh kg-1(0.022 Wh cm-3) at a power density of 293 W kg-1 (0.284 W cm-3). Future work will focus on enhancing synthesis methods, exploring different bimetallic combinations, and optimizing electrode designs for gas sensors, batteries, fuel cells, biological sensors, and so on, with outstanding performance and sustainability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Ti3C2Tx(MXene)被广泛认为是用于构建具有过渡金属硫属元素化物(TMC)的异质结构以提高锂离子存储的电化学性能的优异衬底。然而,由于Ti3C2Tx和TMC之间的异质界面处的Ti3C2Tx衍生的TiO2,常规合成策略不可避免地导致差的电化学电荷转移。这里,提出了一种创新的原位硒化策略,用金属TiSe2界面代替Ti3C2Tx上最初产生的TiO2,清除由MXene氧化引起的缓慢电荷转移势垒的瓶颈。由CoSe2和TiSe2形成的双金属硒化物的构造产生固有电场,以指导异质界面中的快速离子扩散动力学。此外,实验和理论计算证实了CoSe2/TiSe2/Ti3C2Tx异质结构具有增强的结构稳定性和改进的速率性能。工程化的异质结构表现出超高的伪电容贡献(在0.1mVs-1时为73.1%),使其非常适合抵消双层材料之间的动力学差异。基于CoSe2/TiSe2/Ti3C2Tx的组装锂离子电容器具有高能量密度和超长寿命(在2Ag-1下10.000次后为89.5%)。这种设计的策略提供了一种可行的解决方案,用于利用MXene基板在锂存储中的超快电荷转移动力学的性能优势。
    Ti3C2Tx (MXene) is widely acknowledged as an excellent substrate for constructing heterogeneous structures with transition metal chalcogenides (TMCs) for boosting the electrochemical performance of lithium-ion storage. However, conventional synthesis strategies inevitably lead to poor electrochemical charge transfer due to Ti3C2Tx-derived TiO2 at the heterogeneous interface between Ti3C2Tx and TMCs. Here, an innovative in situ selenization strategy is proposed to replace the originally generated TiO2 on Ti3C2Tx with metallic TiSe2 interphase, clearing the bottleneck of slow charge transfer barrier caused by MXene oxidation. The construction of bimetallic selenide formed by CoSe2 and TiSe2 generates intrinsic electric fields to guide the fast ion diffusion kinetics in a heterogeneous interface. Additionally, the CoSe2/TiSe2/Ti3C2Tx heterogeneous structure with enhanced structural stability and improved rate performance is confirmed by both experiments and theoretical calculations. The engineered heterogeneous structure exhibits an ultra-high pseudocapacitance contribution (73.1% at 0.1 mV s-1), rendering it well-suited to offset the kinetics differences between double-layer materials. The assembled lithium-ion capacitor based on CoSe2/TiSe2/Ti3C2Tx possesses a high energy density and an ultralong life span (89.5% after 10 000 times at 2 A g-1). This devised strategy provides a feasible solution for utilizing the performance advantages of MXene substrates in lithium storage with ultrafast charge transfer kinetics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目前,选择和制备合适的正极和负极材料来制造高性能的非对称超级电容器是非常必要的。金属有机骨架材料(MOFs)由于其高导电性在储能领域受到广泛关注。作为一个分支,锆有机骨架(UIO-66)是一种有前途的多孔材料,由于其大的比表面积和丰富的Zr中心。氧化石墨烯(GO)和MXene由于其丰富的活性位点和可调节的层间距离而非常适合作为用于进行MOF的衬底材料。通过水热法和煅烧法原位复合GO和MXene@NiZrP制备的GO/MXene@NiZrP显示出优异的电化学性能。与前体UIO-66相比,最终产品GO/MXene@NiZrP的比电容增加了十倍以上,主要是因为其特殊的层状多孔结构,GO/MXene@NiZrP具有较大的比表面积,孔隙体积,和不稳定的Zr4引起的表面缺陷比UIO-66。以GO/MXene@NiZrP为正极,生物炭(BC)为负极,非对称超级电容器,BC//GO/MXene@NiZrP,是组装的。在10Ag-1的电流密度下进行10,000次循环后,电容保持率保持在83.3%,表现出优异的循环稳定性。
    At present, it is very necessary to select and prepare suitable positive and negative electrode materials to fabricate high-performance asymmetric supercapacitors. Metal-organic frameworks (MOFs) have garnered significant attention in the energy storage field due to their high conductivity. As a branch, the zirconium organic framework (UIO-66) is a promising porous material due to its large specific surface area and abundant Zr centers. Graphene oxide (GO) and MXene are very suitable as substrate materials for conducting an MOF due to their abundant active sites and adjustable interlayer distance. The GO/MXene@NiZrP prepared through an in situ composite of GO and Mxene with the hydrothermal method and calcining method showed excellent electrochemical performance. Compared with the precursor UIO-66, the specific capacitance of the final product GO/MXene@NiZrP increases more than ten times, mainly because of its special layered porous structure, and GO/MXene@NiZrP has a larger specific surface area, pore volume, and surface defects caused by unstable Zr4+ than those of UIO-66. Using GO/MXene@NiZrP as the positive electrode and biochar (BC) as the negative electrode, an asymmetric supercapacitor, BC//GO/MXene@NiZrP, is assembled. After 10,000 cycles at a current density of 10 A g-1, the capacitance retention remains at 83.3%, showing excellent cycle stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    开发在极端操作条件下具有良好抗变形性的柔性能量存储装置是非常期望的,但仍然是非常具有挑战性的。通过垂直梯度冰模板诱导聚合,设计并合成了超弹性MXene增强的聚乙烯醇/聚苯胺(AMPH)水凝胶电极。这种方法允许聚苯胺(PANI)和2DMXene层沿着细长的排列的冰晶以受控的方式单向生长。所得的3D单向AMPH水凝胶表现出固有的拉伸性和电子导电性,即使在极端条件下也能完全恢复其形状,如500%的拉伸应变,50%的压缩应变。水凝胶电极中MXene的存在增强了其对机械压缩和拉伸的弹性,导致阻力变化较小。AMPH在0.2和2mAcm-2的电流密度下分别具有130.68和88.02mFcm-2的比电容,并在100%和200%的伸长率下保持其原始电容的90%和70%,分别。基于AMPH的超级电容器在高盐度环境和宽温度范围(-30-80°C)中表现出卓越的性能。高电化学活性,温度耐受性,基于AMPH的超级电容器的机械鲁棒性使其有望成为柔性和可穿戴电子设备的电源。
    Developing flexible energy storage devices with good deformation resistance under extreme operating conditions is highly desirable yet remains very challenging. Super-elastic MXene-enhanced polyvinyl alcohol/polyaniline (AMPH) hydrogel electrodes are designed and synthesized through vertical gradient ice templating-induced polymerization. This approach allows for the unidirectional growth of polyaniline (PANI) and 2D MXene layers along the elongated arrayed ice crystals in a controlled manner. The resulting 3D unidirectional AMPH hydrogel exhibits inherent stretchability and electronic conductivity, with the ability to completely recover its shape even under extreme conditions, such as 500% tensile strain, 50% compressive strain. The presence of MXene in the hydrogel electrode enhances its resilience to mechanical compression and stretching, resulting in less variation in resistance. AMPH has a specific capacitance of 130.68 and 88.02 mF cm-2 at a current density of 0.2 and 2 mA cm-2, respectively, and retains 90% and 70% of its original capacitance at elongation of 100% and 200%, respectively. AMPH-based supercapacitors demonstrate exceptional performance in high salinity environments and wide temperature ranges (-30-80 °C). The high electrochemical activity, temperature tolerance, and mechanical robustness of AMPH-based supercapacitor endow it promising as the power supply for flexible and wearable electronic devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    MXene,一种有前途的二维纳米材料,由于其多层结构,在各种应用中表现出巨大的潜力,类似金属的导电性,溶液可加工性,和表面功能化能力。这些卓越的性能有助于将MXene和MXene基材料集成到高性能聚合物复合材料中。关于这一点,全面和结构良好的最新审查对于深入了解MXene/热塑性聚氨酯纳米复合材料至关重要。这篇综述讨论了MXenes的各种合成和改性方法,MXene/热塑性聚氨酯纳米复合材料的当前研究进展和未来潜力,现有的知识差距,和进一步发展。主要重点是讨论MXene基化合物的改性策略及其阻燃效率,特别强调在TPU矩阵中理解它们的机制。最终,这篇综述解决了当前的挑战,并为这些材料的实际利用提出了未来的方向。
    MXene, a promising two-dimensional nanomaterial, exhibits significant potential across various applications due to its multilayered structure, metal-like conductivity, solution processability, and surface functionalization capabilities. These remarkable properties facilitate the integration of MXenes and MXene-based materials into high-performance polymer composites. Regarding this, a comprehensive and well-structured up-to-date review is essential to provide an in-depth understanding of MXene/thermoplastic polyurethane nanocomposites. This review discusses various synthetic and modification methods of MXenes, current research progress and future potential on MXene/thermoplastic polyurethane nanocomposites, existing knowledge gaps, and further development. The main focus is on discussing strategies for modifying MXene-based compounds and their flame-retardant efficiency, with particular emphasis on understanding their mechanisms within the TPU matrix. Ultimately, this review addresses current challenges and suggests future directions for the practical utilization of these materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号