MT: Delivery Strategies

MT : 交付策略
  • 文章类型: Journal Article
    患有BRAF突变黑色素瘤的患者在使用有效的BRAF抑制剂(BRAFi)如维罗非尼治疗的仅7个月内就有肿瘤复发。已经证明,驱动BRAFi抗性的多种分子途径收敛于黑素瘤中c-Myc的激活。因此,我们通过将10号染色体上缺失的磷酸酶和张力蛋白同源物(PTEN)肿瘤抑制基因缺失和BRD4癌蛋白上调作为耐药黑色素瘤的Myc依赖性脆弱性,确定了一种新的组合治疗策略.作为有希望的治疗目标,我们决定同时递送PTEN质粒和BRD4靶向的Proteopoly-Targeting嵌合体(ARV),用于治疗BRAFi耐药黑色素瘤的“不可药物化”c-Myc.由于PTEN质粒和ARV的理化性质不同,我们制备了载有PTEN质粒的脂质纳米颗粒(PL-NANO)和载有ARV-825的纳米脂质体(AL-NANO),使每种治疗有效负载的平均粒径小于100nm,包封效率大于99%.PL-NANO和AL-NANO的组合在体外二维和三维模型中显示出协同的肿瘤生长抑制和大量凋亡。重要的是,PL-NANO和AL-NANO的同时递送实现了PTEN表达水平的显著上调和BRD4蛋白的降解,最终下调了BRAFi抗性黑色素瘤细胞中的c-Myc水平.总之,提供这种新型致命鸡尾酒的脂质纳米载体是一种针对BRAFi抗性黑色素瘤中不可药用的c-Myc癌基因的唯一基因疗法。
    Patients suffering from BRAF mutant melanoma have tumor recurrence within merely 7 months of treatment with a potent BRAF inhibitor (BRAFi) like vemurafenib. It has been proven that diverse molecular pathways driving BRAFi resistance converge to activation of c-Myc in melanoma. Therefore, we identified a novel combinatorial therapeutic strategy by targeting loss of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor gene and upregulated BRD4 oncoprotein as Myc-dependent vulnerabilities of drug-resistant melanoma. Being promising therapeutic targets, we decided to concomitantly deliver PTEN plasmid and BRD4 targeted PROteolysis-TArgeting Chimera (ARV) to drug the \"undruggable\" c-Myc in BRAFi-resistant melanoma. Since PTEN plasmid and ARV are distinct in their physicochemical properties, we fabricated PTEN-plasmid loaded lipid nanoparticles (PL-NANO) and ARV-825-loaded nanoliposomes (AL-NANO) to yield a mean particle size of less than 100 nm and greater than 99% encapsulation efficiency for each therapeutic payload. Combination of PL-NANO and AL-NANO displayed synergistic tumor growth inhibition and substantial apoptosis in in vitro two-dimensional and three-dimensional models. Importantly, simultaneous delivery of PL-NANO and AL-NANO achieved significant upregulation of PTEN expression levels and degradation of BRD4 protein to ultimately downregulate c-Myc levels in BRAFi-resistant melanoma cells. Altogether, lipid nanocarriers delivering this novel lethal cocktail stands as one-of-a-kind gene therapy to target undruggable c-Myc oncogene in BRAFi-resistant melanoma.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于保护肺的生理屏障和内体截留现象,将反义寡核苷酸(ASO)递送至气道上皮细胞是艰巨的。这阻止了ASO到达它们的细胞内目标。涉及肽的各种递送策略-,lipid-,正在研究基于聚合物的载体,然而挑战依然存在。S10是一种基于肽的递送剂,能够在细胞内递送生物分子,如GFP,CRISPR相关核酸酶核糖核蛋白(RNP),基本编辑器RNP,和荧光肽在鼻内或气管内给药后进入肺细胞,雪貂,和恒河猴.在这里,我们证明,在单次鼻内滴注后,将S10共价连接到荧光标记的肽或功能性剪接转换磷酸二酰胺吗啉代寡聚物上可改善小鼠气道上皮的细胞内递送.数据显示,从气管到肺部远端区域的均匀输送,特别是进入气道内衬的细胞。定量测量进一步强调,与直接缀合(没有PEG接头)或经由永久硫醇-马来酰亚胺键缀合相比,经由二硫键通过聚乙二醇化(PEG)接头缀合是最有益的策略。我们相信,基于S10的缀合提供了在肺中实现具有治疗性质的肽和ASO的细胞内递送的伟大策略。
    Delivery of antisense oligonucleotides (ASOs) to airway epithelial cells is arduous due to the physiological barriers that protect the lungs and the endosomal entrapment phenomenon, which prevents ASOs from reaching their intracellular targets. Various delivery strategies involving peptide-, lipid-, and polymer-based carriers are being investigated, yet the challenge remains. S10 is a peptide-based delivery agent that enables the intracellular delivery of biomolecules such as GFP, CRISPR-associated nuclease ribonucleoprotein (RNP), base editor RNP, and a fluorescent peptide into lung cells after intranasal or intratracheal administrations to mice, ferrets, and rhesus monkeys. Herein, we demonstrate that covalently attaching S10 to a fluorescently labeled peptide or a functional splice-switching phosphorodiamidate morpholino oligomer improves their intracellular delivery to airway epithelia in mice after a single intranasal instillation. Data reveal a homogeneous delivery from the trachea to the distal region of the lungs, specifically into the cells lining the airway. Quantitative measurements further highlight that conjugation via a disulfide bond through a pegylated (PEG) linker was the most beneficial strategy compared with direct conjugation (without the PEG linker) or conjugation via a permanent thiol-maleimide bond. We believe that S10-based conjugation provides a great strategy to achieve intracellular delivery of peptides and ASOs with therapeutic properties in lungs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基因治疗和基因编辑技术的最新进展为成功治疗神经系统疾病提供了非常实际的潜力。然而,由于其解剖复杂性和许多分子不渗透的高度限制性微脉管系统,药物递送限制继续阻碍靶向大脑的可行治疗干预。实现基于基因的疗法的治疗潜力需要强大的封装和安全有效的递送到靶细胞。尽管病毒载体已广泛用于靶向递送基于基因的疗法,缺点,如宿主基因组整合,延长表达,不希望的脱靶突变,和免疫原性导致了替代策略的发展。工程化病毒样颗粒(eVLP)是一种新兴的,有希望的平台,可以通过假型化实现神经营养。这篇综述概述了改善eVLP神经嗜性的策略,用于治疗性脑递送基因编辑剂。
    Recent advances in gene therapy and gene-editing techniques offer the very real potential for successful treatment of neurological diseases. However, drug delivery constraints continue to impede viable therapeutic interventions targeting the brain due to its anatomical complexity and highly restrictive microvasculature that is impervious to many molecules. Realizing the therapeutic potential of gene-based therapies requires robust encapsulation and safe and efficient delivery to the target cells. Although viral vectors have been widely used for targeted delivery of gene-based therapies, drawbacks such as host genome integration, prolonged expression, undesired off-target mutations, and immunogenicity have led to the development of alternative strategies. Engineered virus-like particles (eVLPs) are an emerging, promising platform that can be engineered to achieve neurotropism through pseudotyping. This review outlines strategies to improve eVLP neurotropism for therapeutic brain delivery of gene-editing agents.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    mRNA是体内表达蛋白质的有希望的方式。将mRNA有效转染到细胞中需要药物递送系统。在这项研究中,我们评估了几种将mRNA转染到肿瘤中的药物递送系统。脂质纳米颗粒将mRNA递送到引流淋巴结和肝脏,甚至通过肿瘤内注射.基于脂质体的系统不能一致地为不同类型的肿瘤细胞提供mRNA。我们发现PBS将mRNA导入几种肿瘤,钙离子提高了效率,特别是在雄性小鼠中。圆二色性光谱仪提示PBS中mRNA的结构变化。透射电镜显示钙离子促进PBS中mRNA纳米颗粒的形成。转染编码OX40-配体的mRNA,白细胞介素(IL)-36γ,和IL-23通过PBS+钙离子减弱肿瘤生长。我们的结果表明,将PBS与钙离子结合可促进mRNA转染到肿瘤中。这些数据为开发用于癌症治疗的mRNA转染方法提供了信息。
    mRNA is a promising modality for expressing a protein in vivo. Drug delivery systems are required for the efficient transfection of mRNA into cells. In this study, we evaluated several drug delivery systems for transfecting mRNA into tumors. A lipid nanoparticle delivered mRNA to the draining lymph nodes and liver, even by intratumoral injection. A liposome-based system did not consistently provide mRNA for different types of tumor cells. We found that PBS introduced mRNA into several tumors, and calcium ions enhanced the efficiency, particularly in male mice. The circular dichroism spectrometer suggested a structural change in mRNA in PBS. Transmission electron microscopy revealed that calcium ions promoted the formation of mRNA nanoparticles in PBS. Transfection of mRNAs coding OX40-ligand, interleukin (IL)-36γ, and IL-23 by PBS + calcium ions attenuated tumor growth. Our results indicate that combining PBS with calcium ions promotes the transfection of mRNA into tumors. These data provide information for the development of methods for transfection of mRNA for cancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    白细胞介素-12(IL-12)基因电转移(GET)递送在诱导长期,小鼠和人类黑色素瘤和其他实体瘤的完全消退。免疫检查点抑制剂增强了治疗效果,IL-12质粒GET(pIL-12GET)和抗程序性细胞死亡蛋白1(PD-1)单克隆抗体的组合已达到临床试验。在这项研究中,我们设计了编码pembrolizumab和nivolumab程序性细胞死亡1配体1(PD-L1)结合区小鼠同源物的肽和质粒.我们假设肿瘤内自分泌/旁分泌肽的表达将阻断PD-1/PD-L1的结合,并为癌症患者提供有效且具有成本效益的治疗替代方案。我们证明了与派姆单抗的小鼠同源物在体外阻断PD-1/PD-L1是有效的。肿瘤内质粒递送后,两种肽都结合肿瘤细胞上的PD-L1。我们确定质粒DNA递送到体内肿瘤或体外肿瘤细胞上调几种免疫调节剂和PD-L1mRNA和蛋白质,加强这种治疗。最后,我们测试了pIL-12GET疗法和肽质粒的组合。我们确定pIL-12GET治疗功效可以通过与编码派姆单抗小鼠同源物的质粒组合来增强。
    Interleukin-12 (IL-12) gene electrotransfer (GET) delivery is highly effective in inducing long-term, complete regression in mouse and human melanoma and other solid tumors. Therapeutic efficacy is enhanced by immune checkpoint inhibitors, and the combination of IL-12 plasmid GET (pIL-12 GET) and anti-programmed cell death protein 1 (PD-1) monoclonal antibodies has reached clinical trials. In this study, we designed peptides and plasmids encoding the mouse homologs of the pembrolizumab and nivolumab programmed cell death 1 ligand 1 (PD-L1) binding regions. We hypothesized that intratumor autocrine/paracrine peptide expression would block PD-1/PD-L1 binding and provide cancer patients with an effective and cost-efficient treatment alternative. We demonstrated that the mouse homolog to pembrolizumab was effective at blocking PD-1/PD-L1 in vitro. After intratumor plasmid delivery, both peptides bound PD-L1 on tumor cells. We established that plasmid DNA delivery to tumors in vivo or to tumor cells in vitro upregulated several immune modulators and PD-L1 mRNA and protein, potentiating this therapy. Finally, we tested the combination of pIL-12 GET therapy and peptide plasmids. We determined that pIL-12 GET therapeutic efficacy could be enhanced by combination with the plasmid encoding the pembrolizumab mouse homolog.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于重组腺相关病毒(rAAV)的病毒载体已经成为中枢神经系统(CNS)中用于治疗性基因递送的最广泛使用的系统。尽管在神经学应用中具有临床安全性和有效性,采用当前一代载体的障碍在于它们的效率有限,导致CNS靶细胞的转导有限。为了解决这个限制,研究人员对符合目的的AAV进行了生物工程改造,改善了中枢神经系统嗜性和组织穿透性.虽然这些新型AAV的临床前评估主要在动物模型中进行,人类诱导多能干细胞(hiPSC)衍生的类器官提供了在人类环境中功能评估新型AAV变体的独特机会。在这项研究中,我们对大量野生型和生物工程AAV衣壳在hiPSC来源的脑类器官中的转导效率进行了全面和公正的评估.我们证明,在脑脊液(CSF)递送后,在小鼠和非人灵长类动物模型中体内都可以重现在类器官中观察到的有效AAV转导。总之,我们的研究展示了脑类器官系统在新型AAV载体预筛选中的应用。此外,我们报告了在体内临床前模型中通过CSF递送时表现出改善的CNS转导效率的新型AAV变体的数据.
    Viral vectors based on recombinant adeno-associated virus (rAAV) have become the most widely used system for therapeutic gene delivery in the central nervous system (CNS). Despite clinical safety and efficacy in neurological applications, a barrier to adoption of the current generation of vectors lies in their limited efficiency, resulting in limited transduction of CNS target cells. To address this limitation, researchers have bioengineered fit-for-purpose AAVs with improved CNS tropism and tissue penetration. While the preclinical assessment of these novel AAVs is primarily conducted in animal models, human induced pluripotent stem cell (hiPSC)-derived organoids offer a unique opportunity to functionally evaluate novel AAV variants in a human context. In this study, we performed a comprehensive and unbiased evaluation of a large number of wild-type and bioengineered AAV capsids for their transduction efficiency in hiPSC-derived brain organoids. We demonstrate that efficient AAV transduction observed in organoids was recapitulated in vivo in both mouse and non-human primate models after cerebrospinal fluid (CSF) delivery. In summary, our study showcases the use of brain organoid systems for the pre-screening of novel AAV vectors. Additionally, we report data for novel AAV variants that exhibit improved CNS transduction efficiency when delivered via the CSF in in vivo preclinical models.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    mRNA的应用经历了前所未有的应用-从疫苗接种到细胞治疗。自然杀伤(NK)细胞被认为在免疫疗法中具有显著的潜力。基于NK的细胞疗法已引起人们的注意,因为同种异体移植物具有最小的移植物抗宿主风险,从而导致更容易的现成生产。NK细胞可以用病毒载体或电穿孔进行工程改造,涉及高成本,风险,和毒性,强调需要替代方式作为mRNA技术。我们成功开发,筛选,并优化了基于咪唑脂质的新型脂质平台。制剂通过微流体混合制备,并表现出约100nm的尺寸,多分散指数小于0.2。他们能够转染NK-92细胞,KHYG-1细胞,和高效无细胞毒性的原代NK细胞,而LipofectamineMessengerMax和D-Lin-MC3基于脂质纳米颗粒的制剂则没有。此外,与修饰的mRNA相比,未修饰的mRNA的翻译更高,时间更稳定。值得注意的是,治疗相关的白介素2mRNA的递送导致NK细胞系和原代NK细胞的生存力以及保留的活化标记和细胞毒性。总之,我们的平台具备成功部署基于NK的治疗策略所需的所有先决条件.
    mRNA applications have undergone unprecedented applications-from vaccination to cell therapy. Natural killer (NK) cells are recognized to have a significant potential in immunotherapy. NK-based cell therapy has drawn attention as allogenic graft with a minimal graft-versus-host risk leading to easier off-the-shelf production. NK cells can be engineered with either viral vectors or electroporation, involving high costs, risks, and toxicity, emphasizing the need for alternative way as mRNA technology. We successfully developed, screened, and optimized novel lipid-based platforms based on imidazole lipids. Formulations are produced by microfluidic mixing and exhibit a size of approximately 100 nm with a polydispersity index of less than 0.2. They are able to transfect NK-92 cells, KHYG-1 cells, and primary NK cells with high efficiency without cytotoxicity, while Lipofectamine Messenger Max and D-Lin-MC3 lipid nanoparticle-based formulations do not. Moreover, the translation of non-modified mRNA was higher and more stable in time compared with a modified one. Remarkably, the delivery of therapeutically relevant interleukin 2 mRNA resulted in extended viability together with preserved activation markers and cytotoxic ability of both NK cell lines and primary NK cells. Altogether, our platforms feature all prerequisites needed for the successful deployment of NK-based therapeutic strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    成功的DNA疫苗接种通常需要借助疫苗组分内的病毒载体或电穿孔装置进入宿主的肌肉或皮肤。然而,这些系统有一定的障碍,包括有限的转基因能力,在人类中广泛存在的免疫力,以及由高压脉冲引起的大量细胞死亡,分别。在这项研究中,我们重新利用了两亲性生物可吸收共聚物(ABC),称为PLA-PEG,作为表面工程剂,可在制备过程中的稳定性和疫苗接种后的生物相容性之间调节脂质纳米颗粒(LNP)。LNP载体可以装载严重急性呼吸综合征冠状病毒2(SARS-CoV-2)尖峰特异性DNA;以这种形式,DNA-LNP在仓鼠中具有免疫原性,并且在针对异源病毒攻击的DNA-LNP疫苗接种后或作为针对SARS-CoV-2变体的杂合型疫苗加强剂引发保护性免疫。这些数据提供了关于LNP组成之间关系的全面信息,制造过程,和疫苗功效。这项研究的结果为设计下一代LNP制剂提供了新的见解,并为提高疫苗能力以对抗现有和可能出现的传染病/病原体铺平道路。
    Successful DNA vaccination generally requires the aid of either a viral vector within vaccine components or an electroporation device into the muscle or skin of the host. However, these systems come with certain obstacles, including limited transgene capacity, broad preexisting immunity in humans, and substantial cell death caused by high voltage pulses, respectively. In this study, we repurposed the use of an amphiphilic bioresorbable copolymer (ABC), called PLA-PEG, as a surface engineering agent that conciliates lipid nanoparticles (LNPs) between stability during preparation and biocompatibility post-vaccination. The LNP carrier can be loaded with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-specific DNA; in this form, the DNA-LNP is immunogenic in hamsters and elicits protective immunity following DNA-LNP vaccination against heterologous virus challenge or as a hybrid-type vaccine booster against SARS-CoV-2 variants. The data provide comprehensive information on the relationships between LNP composition, manufacturing process, and vaccine efficacy. The outcomes of this study offer new insights into designing next-generation LNP formulations and pave the way for boosting vaccine power to combat existing and possible emerging infectious diseases/pathogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    全世界数百万人患有遗传性遗传病,创伤,传染病,或者眼睛的癌症,许多眼病会导致不可逆转的失明,这是一个重大的公共卫生负担。眼睛是一个相对较小的免疫特权器官。使用基于核酸的药物来操纵靶向眼部疾病根源的功能不良的基因被认为是具有巨大前景的治疗方法。然而,由于某些不利的特征,在体内利用核酸疗法仍然存在一些挑战,比如不稳定,生物载体依赖性细胞摄取,体内短药代动力学曲线(RNA),以及中靶和脱靶副作用(DNA)。脂质纳米颗粒(LNP)作为基因载体的开发是革命性的进步,为核酸疗法的临床应用做出了贡献。LNP具有捕获和转运各种遗传物质的能力,如小干扰RNA,mRNADNA,和基因编辑复合物。这为通过抑制致病基因来解决眼部疾病开辟了途径,治疗性蛋白质的表达,或纠正遗传缺陷。这里,我们深入研究了眼科基因治疗的尖端LNP技术,涵盖配方设计,临床前发展,和临床翻译。
    Millions of people worldwide have hereditary genetic disorders, trauma, infectious diseases, or cancer of the eyes, and many of these eye diseases lead to irreversible blindness, which is a major public health burden. The eye is a relatively small and immune-privileged organ. The use of nucleic acid-based drugs to manipulate malfunctioning genes that target the root of ocular diseases is regarded as a therapeutic approach with great promise. However, there are still some challenges for utilizing nucleic acid therapeutics in vivo because of certain unfavorable characteristics, such as instability, biological carrier-dependent cellular uptake, short pharmacokinetic profiles in vivo (RNA), and on-target and off-target side effects (DNA). The development of lipid nanoparticles (LNPs) as gene vehicles is revolutionary progress that has contributed the clinical application of nucleic acid therapeutics. LNPs have the capability to entrap and transport various genetic materials such as small interfering RNA, mRNA, DNA, and gene editing complexes. This opens up avenues for addressing ocular diseases through the suppression of pathogenic genes, the expression of therapeutic proteins, or the correction of genetic defects. Here, we delve into the cutting-edge LNP technology for ocular gene therapy, encompassing formulation designs, preclinical development, and clinical translation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过细胞外囊泡(EV)将治疗性长非编码RNA(lncRNA)递送至心脏有望用于心脏修复。H19是一种lncRNA,在心血管系统中作为基因表达的主要调节因子,交替拼接,但是将其不同的剪接变体加载到EV中以及随后被受体心脏细胞吸收仍然难以捉摸。这里,我们解剖了H19剪接变体的细胞表达,以及它们加载到由Wharton-Jelly间充质基质/干细胞(WJ-MSCs)分泌的EV中.我们证明了小鼠H19基因在WJ-MSC中的过表达诱导不同水平的H19剪接变体的表达。有趣的是,从H19转染的WJ-MSC(EV-H19)分离的EV对于所有测试的剪接变体组显示相似的表达水平。体外,我们进一步证明EV-H19被心肌细胞吸收,成纤维细胞,和内皮细胞(ECs)。最后,活体大鼠心肌切片中的EV向性分析表明,EV主要被心肌细胞和EC内化。总的来说,我们的结果表明,EV可以装载不同的lncRNA剪接变体,并成功被心肌细胞内化.
    The delivery of therapeutic long non-coding RNAs (lncRNA) to the heart by extracellular vesicles (EVs) is promising for heart repair. H19, a lncRNA acting as a major regulator of gene expression within the cardiovascular system, is alternatively spliced, but the loading of its different splice variants into EVs and their subsequent uptake by recipient cardiac cells remain elusive. Here, we dissected the cellular expression of H19 splice variants and their loading into EVs secreted by Wharton-Jelly mesenchymal stromal/stem cells (WJ-MSCs). We demonstrated that overexpression of the mouse H19 gene in WJ-MSCs induces the expression of H19 splice variants at different levels. Interestingly, EVs isolated from the H19-transfected WJ-MSCs (EV-H19) showed similar expression levels for all tested splice variant sets. In vitro, we further demonstrated that EV-H19 was taken up by cardiomyocytes, fibroblasts, and endothelial cells (ECs). Finally, analysis of EV tropism in living rat myocardial slices indicated that EVs were internalized mostly by cardiomyocytes and ECs. Collectively, our results indicated that EVs can be loaded with different lncRNA splice variants and successfully internalized by cardiac cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号