MAM

MAM
  • 文章类型: Journal Article
    柑橘素(CTN)是一种常见的霉菌毒素,存在于被污染的食品和饲料中,对人类和动物都构成健康风险。然而,CTN损伤肠道的机制尚不清楚。在这项研究中,在6周龄的昆明种小鼠中连续28天通过灌胃给予1.25mg/kg和5mg/kg的CTN来诱导肠损伤模型,目的探讨肠道损伤的潜在机制。结果表明,CTN可以对小鼠空肠造成结构损伤。此外,CTN降低Claudin-1,Occludin,ZO-1和MUC2,从而破坏肠的物理和化学屏障。此外,暴露于CTN会改变小鼠肠道微生物群的结构,从而损害肠道微生物屏障。同时,结果表明,CTN暴露可以通过改变内质网中CHOP和GRP78以及线粒体中Bax和Cytc等蛋白的表达来诱导肠细胞过度凋亡。线粒体和内质网通过线粒体相关的内质网膜(MAM)连接,调节膜。我们发现CTN处理后膜上桥接蛋白Fis1和BAP31的表达增加,这会加剧内质网功能障碍,可以激活Caspase-8和Bid等蛋白质,从而通过线粒体途径进一步诱导细胞凋亡。一起来看,这些结果表明,CTN暴露可通过破坏肠屏障和诱导肠细胞过度凋亡而导致肠损伤。
    Citrinin (CTN) is a mycotoxin commonly found in contaminated foods and feed, posing health risks to both humans and animals. However, the mechanism by which CTN damages the intestine remains unclear. In this study, a model of intestinal injury was induced by administering 1.25 mg/kg and 5 mg/kg of CTN via gavage for 28 consecutive days in 6-week-old Kunming mice, aiming to explore the potential mechanisms underlying intestinal injury. The results demonstrate that CTN can cause structural damage to the mouse jejunum. Additionally, CTN reduces the protein expression of Claudin-1, Occludin, ZO-1, and MUC2, thereby disrupting the physical and chemical barriers of the intestine. Furthermore, exposure to CTN alters the structure of the intestinal microbiota in mice, thus compromising the intestinal microbial barrier. Meanwhile, the results showed that CTN exposure could induce excessive apoptosis in intestinal cells by altering the expression of proteins such as CHOP and GRP78 in the endoplasmic reticulum and Bax and Cyt c in mitochondria. The mitochondria and endoplasmic reticulum are connected through the mitochondria-associated endoplasmic reticulum membrane (MAM), which regulates the membrane. We found that the expression of bridging proteins Fis1 and BAP31 on the membrane was increased after CTN treatment, which would exacerbate the endoplasmic reticulum dysfunction, and could activate proteins such as Caspase-8 and Bid, thus further inducing apoptosis via the mitochondrial pathway. Taken together, these results suggest that CTN exposure can cause intestinal damage by disrupting the intestinal barrier and inducing excessive apoptosis in intestinal cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    D-天冬氨酸(D-Asp)通过增强通过下丘脑-垂体-睾丸轴或直接作用于Leydig细胞的性类固醇激素的生物合成来影响精子发生。最近,体外研究也证明了D-Asp对生殖细胞增殖和/或活性的直接作用。然而,尽管D-Asp存在于支持细胞(SC)中,氨基酸在这些细胞中的具体作用仍然未知。本研究研究了D-Asp对TM4SC增殖和活性的影响。关注线粒体区室及其与内质网(ER)的关联。我们发现D-Asp增强了TM4细胞的增殖和活性,如ERK/Akt/PCNA途径的激活和雄激素受体蛋白水平的增加所证明。此外,D-Asp降低了氧化应激和凋亡过程。线粒体功能和动力学的增加,以及减少ER压力,在D-Asp处理的TM4细胞中也发现。已知线粒体与内质网形成线粒体相关内质网膜(MAM),钙离子和脂质从ER转移到线粒体的部位,反之亦然。数据证明D-Asp诱导TM4细胞中MAM的稳定。总之,这项研究首次证明了D-Asp对SC活性的直接影响,并阐明了这些影响的细胞/分子机制,提示D-Asp可以通过提高SC的效率来刺激精子发生。
    D-Aspartic Acid (D-Asp) affects spermatogenesis by enhancing the biosynthesis of the sex steroid hormones acting either through the hypothalamus-pituitary-testis axis or directly on Leydig cells. Recently, in vitro studies have also demonstrated the direct effects of D-Asp on the proliferation and/or activity of germ cells. However, although D-Asp is present in Sertoli cells (SC), the specific role of the amino acid in these cells remains unknown. This study investigated the effects of D-Asp on the proliferation and activity of TM4 SC, focusing on the mitochondrial compartment and its association with the endoplasmic reticulum (ER). We found that D-Asp enhanced the proliferation and activity of TM4 cells as evidenced by the activation of ERK/Akt/PCNA pathway and the increase in the protein levels of the androgen receptor. Furthermore, D-Asp reduced both the oxidative stress and apoptotic process. An increase in mitochondrial functionality and dynamics, as well as a reduction in ER stress, were also found in D-Asp-treated TM4 cells. It is known that mitochondria are closely associated with ER to form the Mitochondrial-Associated Endoplasmic Reticulum Membranes (MAM), the site of calcium ions and lipid transfer from ER to the mitochondria, and vice versa. The data demonstrated that D-Asp induced stabilization of MAM in TM4 cells. In conclusion, this study is the first to demonstrate a direct effect of D-Asp on SC activity and to clarify the cellular/molecular mechanism underlying these effects, suggesting that D-Asp could stimulate spermatogenesis by improving the efficiency of SC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    特丁嗪(TBA)是农业生产中常用的三嗪类除草剂,导致多种组织的毒性损伤。橙皮苷(HSP)是一种类黄酮衍生物,具有抗炎,抗氧化和细胞保护作用,但其在减少农药毒性损害方面的作用尚不清楚。在这项研究中,我们旨在研究TBA暴露对鸡肝细胞的毒性作用以及HSP对TBA诱导的肝毒性的治疗作用。我们的结果表明,HSP可以减轻TBA暴露引起的内质网(ER)应激。有趣的是,TBA显著破坏线粒体相关内质网膜(MAM)的完整性,而HSP治疗表现出相反的趋势。此外,TBA可显著引发肝脏铁凋亡,和HSP处理逆转了TBA暴露下的铁死亡。这些结果表明,HSP可以通过维持MAM完整性来抑制ER应激并减轻TBA暴露下的铁凋亡。这提供了一种新的策略来预防TBA毒性。
    Terbuthylazine (TBA) is a common triazine herbicide used in agricultural production, which causes toxic damage in multiple tissues. Hesperidin (HSP) is a flavonoid derivative that has anti-inflammatory, antioxidant and cytoprotective effects, but its role in reducing toxic damage caused by pesticides is still unclear. In this study, we aimed to investigate the toxic effect of TBA exposure on chicken hepatocytes and the therapeutic effect of HSP on the TBA-induced hepatotoxicity. Our results demonstrated that HSP could alleviate TBA exposure-induced endoplasmic reticulum (ER) stress. Interestingly, TBA significantly disrupted the integrity of mitochondria-associated endoplasmic reticulum membrane (MAM), while HSP treatment showed the opposite tendency. In addition, TBA could significantly trigger ferroptosis in liver, and HSP treatment reversed ferroptosis under TBA exposure. These results suggested that HSP could inhibit ER stress and alleviate ferroptosis under TBA exposure via maintaining MAM integrity, which provided a novel strategy to take precautions against TBA toxicity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:2型糖尿病(T2D)是严重主动脉瓣狭窄(AS)患者常见的合并症,导致不良的左心室(LV)重塑和功能障碍。代谢改变已被认为是T2D对严重AS患者的LV重塑和功能的有害影响的贡献者。但到目前为止,潜在机制尚不清楚.线粒体在心脏能量代谢的调节中起着核心作用。
    目的:我们旨在探讨与T2D对AS患者左心室重塑和功能的有害影响相关的线粒体改变,保留的射血分数,没有额外的心脏病。
    方法:我们结合了深入的临床,重度AS患者的生物学和超声心动图表型,有(n=34)或没有(n=50)T2D,转介瓣膜置换,与术中心肌LV活检的转录组学和组织学分析。
    结果:T2D患者的AS严重程度相似,但心脏重塑更差,收缩和舒张功能比非糖尿病患者。RNAseq分析鉴定出1029个显著差异表达的基因。功能富集分析揭示了几个T2D特异性上调途径,尽管合并症调整,聚集调节炎症,细胞外基质组织,内皮功能/血管生成,和适应心脏肥大。与T2D独立相关的下调基因集与线粒体呼吸链组织/功能和线粒体组织有关。因果网络的产生表明线粒体的Ca2+信号传导减少,与测量的线粒体Ca2+单转运蛋白的基因重塑有利于增强的摄取。组织学分析支持T2D中心肌细胞肥大更大,线粒体VDAC孔蛋白与网状IP3受体之间的接近度降低。
    结论:我们的数据支持线粒体Ca2+信号在T2D诱导的严重AS患者心功能不全中的关键作用,从结构网状-线粒体Ca2解偶联到线粒体基因重塑。因此,我们的研究结果为在动物模型和进一步的人类心脏活检中进行测试开辟了一条新的治疗途径,以便为患有AS的T2D患者提出新的治疗方法.
    背景:URL:https://www。
    结果:gov;唯一标识符:NCT01862237。
    BACKGROUND: Type 2 diabetes (T2D) is a frequent comorbidity encountered in patients with severe aortic stenosis (AS), leading to an adverse left ventricular (LV) remodeling and dysfunction. Metabolic alterations have been suggested as contributors of the deleterious effect of T2D on LV remodeling and function in patients with severe AS, but so far, the underlying mechanisms remain unclear. Mitochondria play a central role in the regulation of cardiac energy metabolism.
    OBJECTIVE: We aimed to explore the mitochondrial alterations associated with the deleterious effect of T2D on LV remodeling and function in patients with AS, preserved ejection fraction, and no additional heart disease.
    METHODS: We combined an in-depth clinical, biological and echocardiography phenotype of patients with severe AS, with (n = 34) or without (n = 50) T2D, referred for a valve replacement, with transcriptomic and histological analyses of an intra-operative myocardial LV biopsy.
    RESULTS: T2D patients had similar AS severity but displayed worse cardiac remodeling, systolic and diastolic function than non-diabetics. RNAseq analysis identified 1029 significantly differentially expressed genes. Functional enrichment analysis revealed several T2D-specific upregulated pathways despite comorbidity adjustment, gathering regulation of inflammation, extracellular matrix organization, endothelial function/angiogenesis, and adaptation to cardiac hypertrophy. Downregulated gene sets independently associated with T2D were related to mitochondrial respiratory chain organization/function and mitochondrial organization. Generation of causal networks suggested a reduced Ca2+ signaling up to the mitochondria, with the measured gene remodeling of the mitochondrial Ca2+ uniporter in favor of enhanced uptake. Histological analyses supported a greater cardiomyocyte hypertrophy and a decreased proximity between the mitochondrial VDAC porin and the reticular IP3-receptor in T2D.
    CONCLUSIONS: Our data support a crucial role for mitochondrial Ca2+ signaling in T2D-induced cardiac dysfunction in severe AS patients, from a structural reticulum-mitochondria Ca2+ uncoupling to a mitochondrial gene remodeling. Thus, our findings open a new therapeutic avenue to be tested in animal models and further human cardiac biopsies in order to propose new treatments for T2D patients suffering from AS.
    BACKGROUND: URL: https://www.
    RESULTS: gov ; Unique Identifier: NCT01862237.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌萎缩侧索硬化(ALS)是成人中最常见的运动神经元疾病。目前,目前还没有已知的药物或临床方法证明了治疗ALS的有效性.线粒体功能和自噬已被确定为ALS发展的关键机制。虽然Bax抑制剂1(BI1)与神经退行性疾病有关,其确切机制尚不清楚。这项研究调查了BI1过表达对ALS在体内和体外的治疗影响,揭示其减轻SOD1G93A诱导的细胞凋亡的能力,核损伤,线粒体功能障碍,和运动神经元的轴突变性。同时,BI1延长了ALS小鼠的发病时间和寿命,改善电机功能,减轻神经元损伤,肌肉损伤,神经肌肉接头损伤等方面。结果表明,BI1可以抑制病理TDP43的形态,并通过与TDP43相互作用最初刺激自噬。这项研究为理解BI1和TDP43对自噬的调控奠定了坚实的理论基础,同时通过它们的相互作用阐明了ALS的发病机理,为临床实施和药物开发提供了新的概念和靶点。
    Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disease in adults. Currently, there are no known drugs or clinical approaches that have demonstrated efficacy in treating ALS. Mitochondrial function and autophagy have been identified as crucial mechanisms in the development of ALS. While Bax inhibitor 1 (BI1) has been implicated in neurodegenerative diseases, its exact mechanism remains unknown. This study investigates the therapeutic impact of BI1 overexpression on ALS both in vivo and in vitro, revealing its ability to mitigate SOD1G93A-induced apoptosis, nuclear damage, mitochondrial dysfunction, and axonal degeneration of motor neurons. At the same time, BI1 prolongs onset time and lifespan of ALS mice, improves motor function, and alleviates neuronal damage, muscle damage, neuromuscular junction damage among other aspects. The findings indicate that BI1 can inhibit pathological TDP43 morphology and initially stimulate autophagy through interaction with TDP43. This study establishes a solid theoretical foundation for understanding the regulation of autophagy by BI1 and TDP43 while shedding light on the pathogenesis of ALS through their interaction - offering new concepts and targets for clinical implementation and drug development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    线粒体是动态细胞器,在代谢和信号传导中具有复杂的作用。原发性线粒体疾病是由影响线粒体结构的致病性遗传变异引起的一组约400个单基因疾病。超微结构和/或功能。在这些疾病中,复杂脂质生物合成的缺陷,特别是独特的线粒体膜脂质心磷脂,膜生物学是一个以临床异质性为特征的新兴群体,但包括心肌病在内的复发性特征,脑病,神经变性,神经病变和3-甲基戊二酸尿症。这篇综述讨论了线粒体膜中的脂质合成,线粒体接触位点和cr组织系统(MICOS),线粒体动力学和贩运,以及与这些过程中的每一个缺陷相关的疾病。我们强调了参与脂质生物合成的蛋白质的重叠功能和蛋白质进入线粒体,指向线粒体功能的总体协调和同步。本文还重点介绍了线粒体与其他细胞器之间的膜相互作用,即内质网,过氧化物酶体,溶酶体和脂滴。我们发现了这些膜相互作用的紊乱,这可能解释了异质病理过程中继发性线粒体功能障碍的观察。这些细胞器相互作用的破坏最终会损害细胞内稳态和机体健康,强调线粒体在人类健康和疾病中的核心作用。
    Mitochondria are dynamic cellular organelles with complex roles in metabolism and signalling. Primary mitochondrial disorders are a group of approximately 400 monogenic disorders arising from pathogenic genetic variants impacting mitochondrial structure, ultrastructure and/or function. Amongst these disorders, defects of complex lipid biosynthesis, especially of the unique mitochondrial membrane lipid cardiolipin, and membrane biology are an emerging group characterised by clinical heterogeneity, but with recurrent features including cardiomyopathy, encephalopathy, neurodegeneration, neuropathy and 3-methylglutaconic aciduria. This review discusses lipid synthesis in the mitochondrial membrane, the mitochondrial contact site and cristae organising system (MICOS), mitochondrial dynamics and trafficking, and the disorders associated with defects of each of these processes. We highlight overlapping functions of proteins involved in lipid biosynthesis and protein import into the mitochondria, pointing to an overarching coordination and synchronisation of mitochondrial functions. This review also focuses on membrane interactions between mitochondria and other organelles, namely the endoplasmic reticulum, peroxisomes, lysosomes and lipid droplets. We signpost disorders of these membrane interactions that may explain the observation of secondary mitochondrial dysfunction in heterogeneous pathological processes. Disruption of these organellar interactions ultimately impairs cellular homeostasis and organismal health, highlighting the central role of mitochondria in human health and disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在过去的几年里,在QC实验室中实施质谱(MS)已成为一种更常见的现象。多属性方法(MAM),和新兴的完整多属性方法(iMAM),是强大的分析工具,利用液相色谱-质谱(LC-MS)方法,使关键质量属性(CQAs)的生物治疗蛋白在合规的设置监测。MAM和iMAM都旨在用单一的LC-MS方法代替或补充几种传统的检测方法,该方法利用MS数据与健壮的结合,半自动数据处理工作流程。由于符合CFR11标准的色谱数据系统软件的可用性,MAM和iMAM工作流程也可以在当前的良好制造实践环境中实施。在这项研究中,MAM和iMAM用于分析4批胰高血糖素样肽-Fc融合蛋白。MAM方法涉及第一个发现阶段,用于识别CQA,第二个阶段,其他样本中选定CQAs的目标监测阶段。对数据集进行新的峰值检测以确定外观,任何峰的缺失或变化。对于天然iMAM工作流程,优化尺寸排阻和强阳离子交换色谱,以鉴定和监测完整水平的CQA。
    Over the past few years, the implementation of mass spectrometry (MS) in QC laboratories has become a more common occurrence. The multi-attribute method (MAM), and emerging intact multi-attribute method (iMAM), are powerful analytical tools utilising liquid chromatography-mass spectrometry (LC-MS) methods that enable the monitoring of critical quality attributes (CQAs) in biotherapeutic proteins in compliant settings. Both MAM and iMAM are intended to replace or supplement several conventional assays with a single LC-MS method utilising MS data in combination with robust, semi-automated data processing workflows. MAM and iMAM workflows can also be implemented into current Good Manufacturing Practices environments due to the availability of CFR 11 compliant chromatography data system software. In this study, MAM and iMAM are employed for the analysis of 4 batches of a glucagon-like peptide-Fc fusion protein. MAM approach involved a first the discovery phase for the identification of CQAs and second, the target monitoring phase of the selected CQAs in other samples. New peak detection was performed on the data set to determine the appearance, absence or change of any peak. For native iMAM workflow both size exclusion and strong cation exchange chromatography were optimized for the identification and monitoring of CQAs at the intact level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    代谢功能障碍是多发性肌萎缩侧索硬化(ALS)模型的标志,其中大多数ALS患者表现出代谢亢进。细胞代谢的中心部位是线粒体,能够在一系列ATP生成反应中利用多种细胞底物。在某些反应过程中产生活性氧(ROS),线粒体对氧化应激有很大贡献。线粒体也是非常活跃的细胞器,与其他细胞器相互作用,随着代谢状态的变化而发生融合/裂变,并定期被细胞翻转。在ALS模型中已经报道了许多这些线粒体功能和过程的破坏,很大程度上表明线粒体功能受损,增加线粒体产生的ROS,破坏与内质网的相互作用,减少周转。本章总结了常规用于评估ALS模型中线粒体的方法以及这些模型中报道的改变。
    Metabolic dysfunction is a hallmark of multiple amyotrophic lateral sclerosis (ALS) models with a majority of ALS patients exhibiting hypermetabolism. The central sites of metabolism in the cell are mitochondria, capable of utilising a multitude of cellular substrates in an array of ATP-generating reactions. With reactive oxygen species (ROS) production occurring during some of these reactions, mitochondria can contribute considerably to oxidative stress. Mitochondria are also very dynamic organelles, interacting with other organelles, undergoing fusion/fission in response to changing metabolic states and being turned over by the cell regularly. Disruptions to many of these mitochondrial functions and processes have been reported in ALS models, largely indicating compromised mitochondrial function, increased ROS production by mitochondria, disrupted interactions with the endoplasmic reticulum and reduced turnover. This chapter summarises methods routinely used to assess mitochondria in ALS models and the alterations that have been reported in these models.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在过去的二十年里,我们目睹了越来越多的人对膜接触位点(CS)在促进细胞器之间直接交流中的重要性的认识。CS是两个细胞器膜相遇的微小区域,但不融合并允许代谢物在细胞器之间转移。在细胞代谢活动的协调中发挥关键作用。成像技术以及分子和细胞生物学研究的重大进展表明,CS比最初认为的更复杂,因为它们非常有活力,他们可以重塑自己的形状,composition,和功能根据代谢和环境的变化,可以发生在两个以上的细胞器之间。这里,我们描述了最近的研究如何导致三向线粒体-ER-脂滴CS的鉴定,并讨论了这些接触在维持脂质储存中的新兴功能,稳态,和平衡。我们还总结了位于线粒体-ER-脂滴界面的关键蛋白质成分的性质和功能,特别关注脂质转移蛋白。了解三方CS对于解开细胞内细胞器间通讯和合作的复杂性至关重要。
    Over the past two decades, we have witnessed a growing appreciation for the importance of membrane contact sites (CS) in facilitating direct communication between organelles. CS are tiny regions where the membranes of two organelles meet but do not fuse and allow the transfer of metabolites between organelles, playing crucial roles in the coordination of cellular metabolic activities. The significant advancements in imaging techniques and molecular and cell biology research have revealed that CS are more complex than what originally thought, and as they are extremely dynamic, they can remodel their shape, composition, and functions in accordance with metabolic and environmental changes and can occur between more than two organelles. Here, we describe how recent studies led to the identification of a three-way mitochondria-ER-lipid droplet CS and discuss the emerging functions of these contacts in maintaining lipid storage, homeostasis, and balance. We also summarize the properties and functions of key protein components localized at the mitochondria-ER-lipid droplet interface, with a special focus on lipid transfer proteins. Understanding tripartite CS is essential for unraveling the complexities of inter-organelle communication and cooperation within cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    新生小鼠反复暴露七氟醚可导致神经元凋亡和线粒体功能障碍。线粒体负责能量产生以维持中枢神经系统的稳态。线粒体相关的内质网膜(MAM)位于线粒体和内质网(ER)之间,它对线粒体功能和细胞存活至关重要。MAM功能障碍会导致神经变性,然而,是否参与七氟醚诱导的神经毒性尚不清楚.我们的研究表明,反复暴露七氟醚会导致线粒体功能障碍并抑制MAM结构。上调的ER-线粒体连接增强了Ca2从细胞质到线粒体的过渡。线粒体Ca2+的过载有助于线粒体通透性转换孔(mPTP)的开放,导致神经元凋亡。Mitofusin2(Mfn2),ER-线粒体接触的关键调节因子,发现在反复暴露七氟醚后被抑制,而Mfn2表达的恢复减轻了成年小鼠由于七氟烷反复暴露引起的认知功能障碍。这些证据表明七氟醚诱导的MAM功能障碍容易受到Mfn2抑制,增强的ER-线粒体接触促进线粒体Ca2+过载,促进mPTP开放和神经元凋亡。本文阐明了七氟醚诱导神经毒性的新机制。此外,靶向Mfn2介导的MAM结构和线粒体功能的调节可能在七氟烷诱导的神经变性中提供治疗优势.
    Repeated sevoflurane exposure in neonatal mice can leads to neuronal apoptosis and mitochondrial dysfunction. The mitochondria are responsible for energy production to maintain homeostasis in the central nervous system. The mitochondria-associated endoplasmic reticulum membrane (MAM) is located between the mitochondria and endoplasmic reticulum (ER), and it is critical for mitochondrial function and cell survival. MAM malfunction contributes to neurodegeneration, however, whether it is involved in sevoflurane-induced neurotoxicity remains unknown. Our study demonstrated that repeated sevoflurane exposure induced mitochondrial dysfunction and dampened the MAM structure. The upregulated ER-mitochondria tethering enhanced Ca2+ transition from the cytosol to the mitochondria. Overload of mitochondrial Ca2+ contributed to opening of the mitochondrial permeability transition pore (mPTP), which caused neuronal apoptosis. Mitofusin 2(Mfn2), a key regulator of ER-mitochondria contacts, was found to be suppressed after repeated sevoflurane exposure, while restoration of Mfn2 expression alleviated cognitive dysfunction due to repeated sevoflurane exposure in the adult mice. These evidences suggest that sevoflurane-induced MAM malfunction is vulnerable to Mfn2 suppression, and the enhanced ER-mitochondria contacts promotes mitochondrial Ca2+ overload, contributing to mPTP opening and neuronal apoptosis. This paper sheds light on a novel mechanism of sevoflurane-induced neurotoxicity. Furthermore, targeting Mfn2-mediated regulation of the MAM structure and mitochondrial function may provide a therapeutic advantage in sevoflurane-induced neurodegeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号