Long-term potentiation

长期增强
  • 文章类型: Journal Article
    感官体验和学习会引起兴奋性和抑制性突触的持久变化,从而为存储器提供了关键的衬底。然而,兴奋性长时程增强(eLTP)或抑郁(eLTD)与抑制性突触同时变化(iLTP/iLTD)的协同调节仍不清楚.在这里,我们研究了NMDA诱导的突触可塑性的共表达在兴奋性和抑制性突触的海马CA1锥体细胞(PC)使用电生理,光遗传学,和药理学方法。我们发现,生长抑素(SST)和小白蛋白(PV)阳性中间神经元对CA1PC的抑制性输入在瞬时NMDA受体激活后显示出输入特异性的长期可塑性变化。值得注意的是,来自SST阳性中间神经元的突触一致表现出iLTP,与激发可塑性的方向无关,而来自PV阳性中间神经元的突触主要显示iLTP与eLTP并发,而不是eLTD。已知神经可塑性依赖于细胞外基质,我们测试了金属蛋白酶(MMP)抑制的影响。MMP3阻断干扰了所有抑制性输入的GABA能可塑性,而MMP9抑制选择性阻断与eLTP共同发生的SST-CA1PC突触中的eLTP和iLTP,而不阻断eLTP。这些发现证明了兴奋性和抑制性可塑性共表达的解离。我们认为这些可塑性共表达的机制可能与维持兴奋-抑制平衡和调节神经元整合模式有关。
    Sensory experiences and learning induce long-lasting changes in both excitatory and inhibitory synapses, thereby providing a crucial substrate for memory. However, the co-tuning of excitatory long-term potentiation (eLTP) or depression (eLTD) with the simultaneous changes at inhibitory synapses (iLTP/iLTD) remains unclear. Herein, we investigated the co-expression of NMDA-induced synaptic plasticity at excitatory and inhibitory synapses in hippocampal CA1 pyramidal cells (PCs) using a combination of electrophysiological, optogenetic, and pharmacological approaches. We found that inhibitory inputs from somatostatin (SST) and parvalbumin (PV)-positive interneurons onto CA1 PCs display input-specific long-term plastic changes following transient NMDA receptor activation. Notably, synapses from SST-positive interneurons consistently exhibited iLTP, irrespective of the direction of excitatory plasticity, whereas synapses from PV-positive interneurons predominantly showed iLTP concurrent with eLTP, rather than eLTD. As neuroplasticity is known to depend on the extracellular matrix, we tested the impact of metalloproteinases (MMP) inhibition. MMP3 blockade interfered with GABAergic plasticity for all inhibitory inputs, whereas MMP9 inhibition selectively blocked eLTP and iLTP in SST-CA1PC synapses co-occurring with eLTP but not eLTD. These findings demonstrate the dissociation of excitatory and inhibitory plasticity co-expression. We propose that these mechanisms of plasticity co-expression may be involved in maintaining excitation-inhibition balance and modulating neuronal integration modes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暴露于慢性压力会损害记忆。此外,艾司西酞普兰对记忆的影响仍然自相矛盾。因此,这项研究调查了长时间服用艾司西酞普兰如何影响输入输出(I/O)功能,成对脉冲比(PPR),在接受可预测和不可预测的慢性轻度应激(PCMS和UCMS,分别)。雄性大鼠随机分为对照组(Co),sham(Sh),PCMS和UCMS(PSt和USt,分别为2小时/天,连续21天),艾司西酞普兰(Esc;10mg/kg,i.p.,21天),以及PCMS和UCMS与艾司西酞普兰(PSt-Esc和USt-Esc,分别)。fEPSP斜率,振幅,使用I/O功能评估海马CA1区的曲线下面积(AUC),PP回应,和LTP。在所有实验动物中定量血清皮质酮(CORT)水平。斜坡,振幅,和I/O函数中fEPSP的AUC,在USt和PSt组中,LTP诱导前后的所有三个PP阶段均显着下降。艾司西酞普兰显着增强了PSt-Esc中的这些参数,但不在USt-Esc组.血清CORT水平证实了实验组的电生理发现。PCMS和UCMS都损害了神经兴奋性,神经传递,和记忆在海马CA1区。艾司西酞普兰仅在PCMS下改善记忆障碍,可能归因于血清CORT水平降低。然而,对神经兴奋性没有影响,神经传递,在UCMS下观察到记忆。这表明可能需要不同的艾司西酞普兰剂量来改善对各种类型的慢性轻度应激的同时机制。
    Exposure to chronic stress impairs memory. Also, escitalopram\'s impact on memory remains paradoxical. Therefore, this study examined how prolonged escitalopram administration affects input-output (I/O) functions, paired-pulse ratio (PPR), and long-term potentiation (LTP) in the hippocampal CA1 area in rats that underwent predictable and unpredictable chronic mild stress (PCMS and UCMS, respectively). Male rats were randomly assigned to different groups of control (Co), sham (Sh), PCMS and UCMS (PSt and USt, respectively; 2 h/day, for 21 consecutive days), escitalopram (Esc; 10 mg/kg, i.p., for 21 days), as well as PCMS and UCMS with escitalopram (PSt-Esc and USt-Esc, respectively). The fEPSP slope, amplitude, and area under the curve (AUC) were assessed in the hippocampal CA1 area using I/O functions, PP responses, and LTP. Serum corticosterone (CORT) levels were quantified in all experimental animals. The slope, amplitude, and AUC of fEPSP in the I/O functions, and all three PP phases prior and subsequent to LTP induction significantly declined in the USt and PSt groups. Escitalopram significantly enhanced these parameters in the PSt-Esc, but not in the USt-Esc group. Serum CORT levels corroborated the electrophysiological findings among experimental groups. Both PCMS and UCMS impaired neural excitability, neurotransmission, and memory within the hippocampal CA1 area. Escitalopram improved memory impairment only under PCMS, potentially attributed to reduced serum CORT levels. However, no influence on neural excitability, neurotransmission, and memory was observed under UCMS. This suggests different escitalopram doses might be required to ameliorate simultaneous mechanisms in response to various types of chronic mild stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    创伤性脑损伤(TBI)是全球死亡率和残疾的重要因素。目前还没有特定的药物可用于治疗幸存者的认知缺陷。香草酸(VA),一种生物活性酚类化合物,在各种神经变性模型中显示出保护作用;然而,其对TBI结果的影响仍然难以捉摸。因此,本研究旨在阐明VA在改善TBI诱导的认知功能减退中的可能作用,并揭示相关机制.使用马尔马鲁冲击加速度模型诱导TBI,以提供300克的冲击力,并且在TBI后30分钟开始用VA(50mg/kg;P.O.)治疗。认知表现,海马长时程增强(LTP),氧化应激标志物,神经功能,脑水肿,并在预定时间点评估形态学变化。TBI导致被动回避任务的认知能力下降,穿孔径路齿状回(PP-DG)通路中的LTP受损,海马氧化应激增加,脑水肿,神经功能缺损,和大鼠海马中的神经元丢失。相比之下,急性VA给药减轻了上述所有TBI结局.数据表明,减少突触可塑性损害,调节氧化和抗氧化防御,减轻脑水肿,和预防VA引起的神经元损失可至少部分归因于其对TBI诱导的认知下降的保护作用。
    Traumatic brain injury (TBI) is a significant contributor to global mortality and disability, and there is still no specific drug available to treat cognitive deficits in survivors. Vanillic acid (VA), a bioactive phenolic compound, has shown protective effects in various models of neurodegeneration; however, its impact on TBI outcomes remains elusive. Therefore, this study aimed to elucidate the possible role of VA in ameliorating TBI-induced cognitive decline and to reveal the mechanisms involved. TBI was induced using the Marmarou impact acceleration model to deliver an impact force of 300 g, and treatment with VA (50 mg/kg; P.O.) was initiated 30 minutes post-TBI. The cognitive performance, hippocampal long-term potentiation (LTP), oxidative stress markers, neurological function, cerebral edema, and morphological changes were assessed at scheduled points in time. TBI resulted in cognitive decline in the passive avoidance task, impaired LTP in the perforant path-dentate gyrus (PP-DG) pathway, increased hippocampal oxidative stress, cerebral edema, neurological deficits, and neuronal loss in the rat hippocampus. In contrast, acute VA administration mitigated all the aforementioned TBI outcomes. The data suggest that reducing synaptic plasticity impairment, regulating oxidative and antioxidant defense, alleviating cerebral edema, and preventing neuronal loss by VA can be at least partially attributed to its protection against TBI-induced cognitive decline.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经性疼痛(NeP)是一种以神经系统损伤或功能障碍为特征的疾病,影响了很大一部分人群。目前的治疗方法无效,强调需要新的治疗方法。麻黄附子细辛汤(MFXD)在临床实践中显示出治疗疼痛的希望;然而,其对抗NeP的潜力和潜在机制尚不清楚。本研究使用超高效液相色谱-高分辨率质谱(UHPLC-HRMS)鉴定了MFXD中的35种化合物。通过检测机械戒断阈值(MWT)和热戒断潜伏期(TWL)评价MFXD对慢性缩窄性损伤(CCI)大鼠的镇痛作用。通过测量机械退缩阈值(MWT)和热退缩潜伏期(TWL)来评估MFXD对慢性压迫性损伤(CCI)大鼠的镇痛作用。低剂量MFXD(L-MFXD)组(4.8g/kg)和高剂量MFXD(H-MFXD)组(9.6g/kg)在CCI手术后第11天和第15天表现出明显高于CCI组的MWT和TWL值。证实了MFXD的显着镇痛疗效。网络药理学分析确定了富含长时程增强(LTP)和谷氨酸能突触等途径的58个关键靶标。MCODE算法进一步鉴定了在LTP中具有显著富集的核心靶标。分子对接显示,中乌头碱,迷迭香酸,和来自MFXD的Delgrandine表现出与NMDAR2B的高结合亲和力(-11kcal/mol),CaMKIIα(-14.3kcal/mol),和ERK(-10.8kcal/mol)。Westernblot和免疫荧光证实H-MFXD显著抑制NMDAR2B的磷酸化水平,CaMKIIα,ERK,和CREB在CCI大鼠脊髓组织中的表达。总之,这项研究表明,MFXD通过抑制NMDAR2B/CaMKIIα/ERK/CREB信号通路对NeP具有有效的镇痛作用。这项研究为使用MFXD进行NeP治疗开辟了一条潜在革命性的道路,鼓励进一步的研究和临床开发。
    Neuropathic pain (NeP) is a condition charactesized by nervous system injury or dysfunction that affects a significant portion of the population. Current treatments are ineffective, highlighting the need for novel therapeutic approaches. Mahuang Fuzi Xixin decoction (MFXD) has shown promise for treating pain conditions in clinical practice; however, its potential against NeP and the underlying mechanisms remain unclear. This study identified 35 compounds in MFXD using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS). The analgesic effects of MFXD on chronic constriction injury (CCI) rats were evaluated through the detection of mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). The analgesic effects of MFXD in rats with chronic constriction injury (CCI) were evaluated by measuring the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). Low-dose MFXD (L-MFXD) group (4.8 g/kg) and high-dose MFXD (H-MFXD) group (9.6 g/kg) exhibited significantly higher MWT and TWL values than the CCI group on days 11 and 15 post-CCI surgery, substantiating the remarkable analgesic efficacy of MFXD. Network pharmacology analysis identified 58 key targets enriched in pathways such as long-term potentiation (LTP) and glutamatergic synapse. The MCODE algorithm further identified core targets with significant enrichment in LTP. Molecular docking revealed that mesaconitine, rosmarinic acid, and delgrandine from MFXD exhibited high binding affinity with NMDAR2B (-11 kcal/mol), CaMKIIα (-14.3 kcal/mol), and ERK (-10.8 kcal/mol). Western blot and immunofluorescence confirmed that H-MFXD significantly suppressed the phosphorylation levels of NMDAR2B, CaMKIIα, ERK, and CREB in the spinal cord tissue of CCI rats. In conclusion, this study demonstrates that MFXD possesses potent analgesic effects on NeP by suppressing the NMDAR2B/CaMKIIα/ERK/CREB signalling pathway. This study unlocks a path toward potentially revolutionising NeP treatment with MFXD, encouraging further research and clinical development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    一氧化氮(NO)是一种用途广泛的气体发射器,首先被证明可以调节心血管功能,然后对更广泛的过程进行严格控制。包括神经递质的释放,神经元兴奋性,和突触可塑性。内皮NO合成酶(eNOS)通常远离突触神经生理学家的头脑,他们将大部分注意力集中在神经元NO合酶(nNOS)上,作为神经血管单元(NVU)中NO的主要来源。然而,现有证据表明,eNOS也可能有助于产生NO的爆发,充当体积细胞间信使,是响应脑实质中的神经元活动而产生的。在这里,我们回顾了eNOS在脑血流和突触可塑性调节中的作用,并讨论了脑血管内皮细胞将突触输入转化为NO信号的机制。我们进一步建议,eNOS可以通过整合来自血流和活跃神经元的信号汇聚到脑血管内皮细胞上,在血管与神经元的通讯中起关键作用。
    Nitric oxide (NO) is a highly versatile gasotransmitter that has first been shown to regulate cardiovascular function and then to exert tight control over a much broader range of processes, including neurotransmitter release, neuronal excitability, and synaptic plasticity. Endothelial NO synthase (eNOS) is usually far from the mind of synaptic neurophysiologists, who have focused most of their attention on neuronal NO synthase (nNOS) as the primary source of NO at the neurovascular unit (NVU). Nevertheless, the available evidence suggests that eNOS could also contribute to generating the burst of NO that, serving as volume intercellular messenger, is produced in response to neuronal activity in the brain parenchyma. Herein, we review the role of eNOS in both the regulation of cerebral blood flow and of synaptic plasticity and discuss the mechanisms by which cerebrovascular endothelial cells may transduce synaptic inputs into a NO signal. We further suggest that eNOS could play a critical role in vascular-to-neuronal communication by integrating signals converging onto cerebrovascular endothelial cells from both the streaming blood and active neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    小胶质细胞,传统上被认为是大脑中的先天免疫细胞,在阿尔茨海默病(AD)的早期阶段驱动神经炎症和突触功能障碍,作用于Aβ积累的上游。集落刺激因子1受体(CSF-1R)主要在小胶质细胞上表达,其水平在神经退行性疾病中显著升高,可能有助于慢性炎症小胶质细胞反应。另一方面,CSF-1R抑制剂在神经退行性疾病的临床前模型中赋予神经保护。这里,我们确定了CSF-1R抑制剂PLX3397对离体海马切片中Aβ介导的突触改变的影响.电生理研究结果表明,PLX3397可以挽救Aβ引起的LTP损伤和神经传递变化。此外,使用共聚焦成像实验,我们证明PLX3397刺激小胶质细胞向吞噬表型转变,进而促进Aβ从谷氨酸能末端的清除。我们认为,Aβ负载的突触末端的选择性修剪可能有助于恢复急性PLX3397治疗后观察到的LTP和兴奋性传递改变。这一结果与CSF1R抑制剂提出的机制一致,那就是消除反应灵敏的小胶质细胞,用新产生的小胶质细胞代替它,稳态小胶质细胞,能够促进大脑修复。总的来说,我们的发现确定了在AD中观察到的快速小胶质细胞调节和早期突触改变之间的联系,可能突出了一个新的疾病修饰目标。
    Microglia, traditionally regarded as innate immune cells in the brain, drive neuroinflammation and synaptic dysfunctions in the early phases of Alzheimer disease (AD), acting upstream to Aβ accumulation. Colony stimulating factor 1-receptor (CSF-1R) is predominantly expressed on microglia and its levels are significantly increased in neurodegenerative diseases, possibly contributing to the chronic inflammatory microglial response. On the other hand, CSF-1R inhibitors confer neuroprotection in preclinical models of neurodegenerative diseases. Here, we determined the effects of the CSF-1R inhibitor PLX3397 on the Aβ-mediated synaptic alterations in ex vivo hippocampal slices. Electrophysiological findings show that PLX3397 rescues LTP impairment and neurotransmission changes induced by Aβ. In addition, using confocal imaging experiments, we demonstrate that PLX3397 stimulates a microglial transition toward a phagocytic phenotype, which in turn promotes the clearance of Aβ from glutamatergic terminals. We believe that the selective pruning of Aβ-loaded synaptic terminals might contribute to the restoration of LTP and excitatory transmission alterations observed upon acute PLX3397 treatment. This result is in accordance with the mechanism proposed for CSF1R inhibitors, that is to eliminate responsive microglia and replace it with newly generated, homeostatic microglia, capable of promoting brain repair. Overall, our findings identify a connection between the rapid microglia adjustments and the early synaptic alterations observed in AD, possibly highlighting a novel disease-modifying target.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    学习和记忆需要位于树突棘上的神经元谷氨酸能突触的协调结构和功能可塑性。这里,我们研究了内质网(ER)如何控制突触后Ca2信号和树突状脊柱大小的长期增强,即,伴随谷氨酸能突触传递功能增强的sLTP。在大多数含ER(ER+)的棘突中,高频光学谷氨酸解套(HFGU)诱导长期持续的sLTP,伴随着由N-甲基-D-天冬氨酸受体(NMDARs)参与的信号级联下游的脊柱ER含量持续增加,L型Ca2+通道(LTCC),和Orai1频道,后者响应于ERCa2释放而被基质相互作用分子1(STIM1)激活。相比之下,HFGU刺激缺乏ER(ER-)的棘仅表达瞬时sLTP,并表现出较弱的Ca2信号,明显缺乏Orai1和ER的贡献。与脊柱内质网调节结构可塑性一致,向ER提供第二种刺激-棘诱导的ER募集以及持续的sLTP,而ER+棘对序贯刺激没有显示大小或ER含量的额外增加。令人惊讶的是,ERCa2+释放诱导的STIM1和Orai1之间的物理相互作用,但不是由此产生的Ca2+通过Orai1通道进入,证明对于持续表达晚期sLTP所需的脊柱大小和ER含量的持续增加是必要的。
    Learning and memory require coordinated structural and functional plasticity at neuronal glutamatergic synapses located on dendritic spines. Here, we investigated how the endoplasmic reticulum (ER) controls postsynaptic Ca2+ signaling and long-term potentiation of dendritic spine size, i.e., sLTP that accompanies functional strengthening of glutamatergic synaptic transmission. In most ER-containing (ER+) spines, high-frequency optical glutamate uncaging (HFGU) induced long-lasting sLTP that was accompanied by a persistent increase in spine ER content downstream of a signaling cascade engaged by N-methyl-D-aspartate receptors (NMDARs), L-type Ca2+ channels (LTCCs), and Orai1 channels, the latter being activated by stromal interaction molecule 1 (STIM1) in response to ER Ca2+ release. In contrast, HFGU stimulation of ER-lacking (ER-) spines expressed only transient sLTP and exhibited weaker Ca2+ signals noticeably lacking Orai1 and ER contributions. Consistent with spine ER regulating structural metaplasticity, delivery of a second stimulus to ER- spines induced ER recruitment along with persistent sLTP, whereas ER+ spines showed no additional increases in size or ER content in response to sequential stimulation. Surprisingly, the physical interaction between STIM1 and Orai1 induced by ER Ca2+ release, but not the resulting Ca2+ entry through Orai1 channels, proved necessary for the persistent increases in both spine size and ER content required for expression of long-lasting late sLTP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脑葡萄糖代谢受损是阿尔茨海默病(AD)的病理特征,最近的蛋白质组学研究强调了AD中神经胶质代谢的破坏。我们报道了吲哚胺-2,3-双加氧酶1(IDO1)的抑制,将色氨酸代谢为犬尿氨酸(KYN),通过恢复星形胶质细胞代谢来挽救AD小鼠临床前模型的海马记忆功能。淀粉样蛋白β和tau寡聚体对星形胶质细胞IDO1的激活会增加KYN并以芳基烃受体依赖性方式抑制糖酵解。在淀粉样蛋白和tau模型中,IDO1抑制改善海马葡萄糖代谢并以单羧酸转运蛋白依赖性方式挽救海马长时程增强。在AD受试者的星形细胞和神经元共培养物中,IDO1抑制改善了星形细胞的乳酸产生和神经元的摄取。因此,目前开发的用于癌症的IDO1抑制剂可能被重新用于治疗AD。
    Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer\'s disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocampal memory function in mouse preclinical models of AD by restoring astrocyte metabolism. Activation of astrocytic IDO1 by amyloid β and tau oligomers increases KYN and suppresses glycolysis in an aryl hydrocarbon receptor-dependent manner. In amyloid and tau models, IDO1 inhibition improves hippocampal glucose metabolism and rescues hippocampal long-term potentiation in a monocarboxylate transporter-dependent manner. In astrocytic and neuronal cocultures from AD subjects, IDO1 inhibition improved astrocytic production of lactate and uptake by neurons. Thus, IDO1 inhibitors presently developed for cancer might be repurposed for treatment of AD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    水通道蛋白-4抗体阳性视神经脊髓炎谱系障碍(AQP4-NMOSD)是一种自身免疫性疾病,其特征是从攻击和长期残疾中恢复不佳。实验数据表明AQP4抗体可以破坏神经可塑性,大脑恢复的基本驱动力。评估脑LTP的成熟方法是通过间歇性theta爆发刺激(iTBS)。本研究旨在通过iTBS检查长期增强(LTP)来探索AQP4-NMOSD患者的神经可塑性。我们进行了一项原则验证研究,包括8例AQP4-NMOSD患者,8例多发性硬化症(MS),和8个健康对照(HC),其中施用iTBS以诱导LTP样效应。iTBS诱导的LTP在3组间表现出显著差异(p:0.006)。值得注意的是,与HC(p=0.01)和pwMS(p=0.02)相比,AQP4-NMOSD患者表现出可塑性受损。这项初步研究提供了第一个支持AQP4-NMOSD患者神经可塑性受损的体内证据。皮质可塑性受损可能会阻碍发作后的恢复,这表明需要有针对性的康复策略。
    Aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) is an autoimmune disease characterized by suboptimal recovery from attacks and long-term disability. Experimental data suggest that AQP4 antibodies can disrupt neuroplasticity, a fundamental driver of brain recovery. A well-established method to assess brain LTP is through intermittent theta-burst stimulation (iTBS). This study aimed to explore neuroplasticity in AQP4-NMOSD patients by examining long-term potentiation (LTP) through iTBS. We conducted a proof-of-principle study including 8 patients with AQP4-NMOSD, 8 patients with multiple sclerosis (MS), and 8 healthy controls (HC) in which iTBS was administered to induce LTP-like effects. iTBS-induced LTP exhibited significant differences among the 3 groups (p: 0.006). Notably, AQP4-NMOSD patients demonstrated impaired plasticity compared to both HC (p = 0.01) and pwMS (p = 0.02). This pilot study provides the first in vivo evidence supporting impaired neuroplasticity in AQP4-NMOSD patients. Impaired cortical plasticity may hinder recovery following attacks suggesting a need for targeted rehabilitation strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    衰老的特征是生理功能的效率逐渐下降,对疾病的脆弱性增加。衰老影响整个身体,包括身体,心理,和社会福祉,但它对大脑和认知能力的影响会对个体的整体生活质量产生特别显著的影响。因此,如果忽视认知老化,在长寿研究中提高寿命和身体健康将是不完整的。促进成功的认知衰老包括减轻认知能力下降的目标,同时增强大脑功能和认知储备。在人类和动物模型中的研究表明,与正常衰老和与年龄相关的脑部疾病有关的认知能力下降更可能与形成学习和记忆基础的突触连接的变化有关。这种依赖活动的突触可塑性重组神经元的结构和功能,不仅适应新的环境,但也要随着时间的推移保持稳健和稳定。因此,了解与年龄相关的认知功能下降的神经机制变得越来越重要.在这次审查中,我们探索健康大脑老化的多方面,重点是突触可塑性,其适应机制和影响衰老过程中认知功能下降的各种因素。我们还将探索动态大脑和神经可塑性,以及生活方式在塑造神经元可塑性中的作用。
    Ageing is characterized by a gradual decline in the efficiency of physiological functions and increased vulnerability to diseases. Ageing affects the entire body, including physical, mental, and social well-being, but its impact on the brain and cognition can have a particularly significant effect on an individual\'s overall quality of life. Therefore, enhancing lifespan and physical health in longevity studies will be incomplete if cognitive ageing is over looked. Promoting successful cognitive ageing encompasses the objectives of mitigating cognitive decline, as well as simultaneously enhancing brain function and cognitive reserve. Studies in both humans and animal models indicate that cognitive decline related to normal ageing and age-associated brain disorders are more likely linked to changes in synaptic connections that form the basis of learning and memory. This activity-dependent synaptic plasticity reorganises the structure and function of neurons not only to adapt to new environments, but also to remain robust and stable over time. Therefore, understanding the neural mechanisms that are responsible for age-related cognitive decline becomes increasingly important. In this review, we explore the multifaceted aspects of healthy brain ageing with emphasis on synaptic plasticity, its adaptive mechanisms and the various factors affecting the decline in cognitive functions during ageing. We will also explore the dynamic brain and neuroplasticity, and the role of lifestyle in shaping neuronal plasticity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号