Lipid-protein interaction

脂质 - 蛋白质相互作用
  • 文章类型: Journal Article
    单股,阳性RNA((+)RNA)病毒在病毒诱导的胞内膜区室中复制其基因组。(+)RNA病毒通过编码膜相互作用蛋白和/或蛋白结构域,将它们的小基因组(几千到几万个碱基)的重要部分用于产生这些区室。诺罗病毒是(+)RNA病毒的非常多样化的属,包括人和动物病原体。人类诺如病毒是世界范围内急性胃肠炎的主要病因,基因型II基因型4(GII.4)诺如病毒占绝大多数感染。在病毒复制的N端编码的三种病毒蛋白多蛋白指导与诺如病毒复制相关的胞内膜重排。在这三个人中,非结构蛋白4(NS4)似乎是最重要的,尽管其在复制细胞器形成中的确切功能尚不清楚。在这里我们生产,纯化和表征GII.4NS4。AlphaFold建模与实验数据相结合,完善并校正了我们以前的NS4的粗略结构模型。使用简单的人工脂质体,我们报道了NS4膜特性的广泛表征。我们发现NS4自组装并由此将脂质体桥接在一起。Cryo-EM,NMR和膜浮选显示形成了几个不同的NS4组件,其中至少有两个以不同的方式将一对膜桥接在一起。诺罗病毒属于(+)RNA病毒,其复制区室从靶内膜挤出并产生双膜囊泡。我们的数据确定21kDaGII.4人诺如病毒NS4可以,在没有任何其他因素的情况下,在图波中概括了几个特征,包括膜并置,发生在这样的过程中。
    Single-stranded, positive-sense RNA ((+)RNA) viruses replicate their genomes in virus-induced intracellular membrane compartments. (+)RNA viruses dedicate a significant part of their small genomes (a few thousands to a few tens of thousands of bases) to the generation of these compartments by encoding membrane-interacting proteins and/or protein domains. Noroviruses are a very diverse genus of (+)RNA viruses including human and animal pathogens. Human noroviruses are the major cause of acute gastroenteritis worldwide, with genogroup II genotype 4 (GII.4) noroviruses accounting for the vast majority of infections. Three viral proteins encoded in the N-terminus of the viral replication polyprotein direct intracellular membrane rearrangements associated with norovirus replication. Of these three, nonstructural protein 4 (NS4) seems to be the most important, although its exact functions in replication organelle formation are unknown. Here we produce, purify and characterize GII.4 NS4. AlphaFold modeling combined with experimental data refine and correct our previous crude structural model of NS4. Using simple artificial liposomes, we report an extensive characterization of the membrane properties of NS4. We find that NS4 self-assembles and thereby bridges liposomes together. Cryo-EM, NMR and membrane flotation show formation of several distinct NS4 assemblies, at least two of them bridging pairs of membranes together in different fashions. Noroviruses belong to (+)RNA viruses whose replication compartment is extruded from the target endomembrane and generates double-membrane vesicles. Our data establish that the 21-kDa GII.4 human norovirus NS4 can, in the absence of any other factor, recapitulate in tubo several features, including membrane apposition, that occur in such processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    油酸水合酶(OhyA)是一种细菌外周膜蛋白,可催化FAD依赖性水添加到膜双层包埋的不饱和脂肪酸中。机会病原体金黄色葡萄球菌使用OhyA来抵消先天免疫系统并支持定植。微生物组中的许多革兰氏阳性和革兰氏阴性细菌也编码OhyA。OhyA是一种二聚体黄素酶,其羧基末端被鉴定为膜结合域;然而,在阐明膜结合结构之前,对OhyA如何与细胞膜结合的理解还不完全。所有可用的OhyA结构描绘了蛋白质在其功能环境之外的溶液状态。这里,我们使用脂质体来解决功能单元的低温电子显微镜结构:OhyA•膜复合物。该蛋白质在膜结合时保持其结构并略微改变脂质体表面的曲率。OhyA优先与20-30nm脂质体结合,在脂质体表面上组装多个拷贝的OhyA二聚体,导致形成更高级的寡聚体。二聚体组装是协同的并且沿着脂质体的形成的脊延伸。我们还解决了二聚体结构的OhyA二聚体,该二聚体结构概括了分子间相互作用,该相互作用稳定了膜双层上的二聚体组装以及OhyA晶体结构晶格中的晶体接触。我们的工作使这种重要的界面酶的膜结合的分子轨迹可视化。
    Oleate hydratase (OhyA) is a bacterial peripheral membrane protein that catalyzes FAD-dependent water addition to membrane bilayer-embedded unsaturated fatty acids. The opportunistic pathogen Staphylococcus aureus uses OhyA to counteract the innate immune system and support colonization. Many Gram-positive and Gram-negative bacteria in the microbiome also encode OhyA. OhyA is a dimeric flavoenzyme whose carboxy terminus is identified as the membrane binding domain; however, understanding how OhyA binds to cellular membranes is not complete until the membrane-bound structure has been elucidated. All available OhyA structures depict the solution state of the protein outside its functional environment. Here, we employ liposomes to solve the cryo-electron microscopy structure of the functional unit: the OhyA•membrane complex. The protein maintains its structure upon membrane binding and slightly alters the curvature of the liposome surface. OhyA preferentially associates with 20-30 nm liposomes with multiple copies of OhyA dimers assembling on the liposome surface resulting in the formation of higher-order oligomers. Dimer assembly is cooperative and extends along a formed ridge of the liposome. We also solved an OhyA dimer of dimers structure that recapitulates the intermolecular interactions that stabilize the dimer assembly on the membrane bilayer as well as the crystal contacts in the lattice of the OhyA crystal structure. Our work enables visualization of the molecular trajectory of membrane binding for this important interfacial enzyme.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SARS-CoV-2是有史以来最具传染性的病毒之一。尽管过去几年进行了大量的研究,病毒的生命周期仍然没有得到很好的理解,特别是膜融合。此过程由融合域(FD)启动,由融合肽(FP)和融合环(FL)组成的高度保守的氨基酸段,协同作用会干扰靶细胞的脂质膜,以降低融合所需的能量成本。在这项研究中,通过基于诱变的方法,我们研究了FD(K825,K835,R847,K854)内的碱性残基利用体外融合测定和19FNMR,通过传统的13C15N技术验证。丙氨酸和电荷守恒突变体揭示了每个基本残基在启动融合的机制中起着高度特异性的作用。有趣的是,K825A导致融合性增加,这被发现与螺旋一内的氨基酸数量相关,进一步暗示了这种特定螺旋在FD融合机制中的作用。这项工作发现碱性残基在FD融合机制中很重要,并强调了K825A,在SARS-CoV-2刺突蛋白的FD内产生的特定突变,由于其可能导致SARS-CoV-2的更强毒株,因此需要进一步研究。
    SARS-CoV-2 is one of the most infectious viruses ever recorded. Despite a plethora of research over the last several years, the viral life cycle is still not well understood, particularly membrane fusion. This process is initiated by the fusion domain (FD), a highly conserved stretch of amino acids consisting of a fusion peptide (FP) and fusion loop (FL), which in synergy perturbs the target cells\' lipid membrane to lower the energetic cost necessary for fusion. In this study, through a mutagenesis-based approach, we have investigated the basic residues within the FD (K825, K835, R847, K854) utilizing an in vitro fusion assay and 19F NMR, validated by traditional 13C 15N techniques. Alanine and charge-conserving mutants revealed every basic residue plays a highly specific role within the mechanism of initiating fusion. Intriguingly, K825A led to increased fusogenecity which was found to be correlated to the number of amino acids within helix one, further implicating the role of this specific helix within the FD\'s fusion mechanism. This work has found basic residues to be important within the FDs fusion mechanism and highlights K825A, a specific mutation made within the FD of the SARS-CoV-2 spike protein, as requiring further investigation due to its potential to contribute to a more virulent strain of SARS-CoV-2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    严重急性呼吸道综合征冠状病毒2(SARS-CoV-2)是一种脂质包膜病毒,可从其感染的宿主细胞中获取其脂质双层。SARS-CoV-2可以通过进行组装和出芽以形成新的病毒体而在细胞之间或在患者之间传播。SARS-CoV-2的组装和出芽是由几种称为包膜(E)的结构蛋白介导的。膜(M),核蛋白(N)和刺突(S),当在哺乳动物细胞中共表达时,其可以形成病毒样颗粒(VLP)。SARS-CoV-2从宿主ER-高尔基体中间区室的组装和出芽是病毒获得其脂质双层的关键步骤。迄今为止,关于SARS-CoV-2如何从宿主膜组装并形成新病毒颗粒的信息很少。在这项研究中,我们使用了几种脂质结合测定法,发现N蛋白可以与阴离子脂质(包括磷酸肌醇和磷脂酰丝氨酸)强烈缔合.此外,我们显示脂质结合发生在N蛋白C末端结构域,这得到了广泛的计算机模拟分析的支持。我们证明了游离和N寡聚形式都发生阴离子脂质结合,表明N可以与核衣壳形式的膜缔合。基于这些结果,我们提出了一个基于体外的脂质依赖模型,在SARS-CoV-2的生命周期中,将N招募到组装地点的细胞和计算机数据。
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a lipid-enveloped virus that acquires its lipid bilayer from the host cell it infects. SARS-CoV-2 can spread from cell to cell or from patient to patient by undergoing assembly and budding to form new virions. The assembly and budding of SARS-CoV-2 is mediated by several structural proteins known as envelope (E), membrane (M), nucleoprotein (N), and spike (S), which can form virus-like particles (VLPs) when co-expressed in mammalian cells. Assembly and budding of SARS-CoV-2 from the host ER-Golgi intermediate compartment is a critical step in the virus acquiring its lipid bilayer. To date, little information is available on how SARS-CoV-2 assembles and forms new viral particles from host membranes. In this study, we used several lipid binding assays and found the N protein can strongly associate with anionic lipids including phosphoinositides and phosphatidylserine. Moreover, we show lipid binding occurs in the N protein C-terminal domain, which is supported by extensive in silico analysis. We demonstrate anionic lipid binding occurs for both the free and the N oligomeric forms, suggesting N can associate with membranes in the nucleocapsid form. Based on these results, we present a lipid-dependent model based on in vitro, cellular, and in silico data for the recruitment of N to assembly sites in the lifecycle of SARS-CoV-2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    将凝血因子锚定到膜的阴离子区域涉及C2域作为关键角色。在膜结合时,凝血因子的酶促反应速率增加了几个数量级。然而,速率加速背后的确切机制尚不清楚,主要是因为缺乏对含C2因子和相应复合物的构象动力学的理解。我们通过表征其膜结合特异性脂质-蛋白质相互作用来阐明人凝血因子V(FV-C2)的C2结构域的膜结合形式。采用全原子分子动力学模拟并利用高流动性膜模拟(HMMM)模型,在12次独立模拟中,我们观察到FV-C2与含磷脂酰丝氨酸(PS)的膜在2-25ns内的自发结合。FV-C2通过三个回路与膜相互作用(尖峰1-3),实现融合,方向稳定。自发膜结合的多个HMMM轨迹提供了广泛的采样和充足的数据,以检查膜诱导的对C2构象动力学的影响以及特定的脂质-蛋白质相互作用。尽管现有的晶体结构代表FV-C2的假定“开放”和“封闭”状态,我们的结果表明这些状态之间的结构的连续分布,在晶体环境中观察到的最密集的结构与“开放”和“封闭”状态不同。最后,我们表征了由K23,Q48和S78形成的推定的PS特异性结合位点,位于由尖峰1-3(PS特异性口袋)包围的凹槽中,根据静态晶体结构的分析,与先前的提议相比,提出了结合的头基部分的不同取向。
    Anchoring of coagulation factors to anionic regions of the membrane involves the C2 domain as a key player. The rate of enzymatic reactions of the coagulation factors is increased by several orders of magnitude upon membrane binding. However, the precise mechanisms behind the rate acceleration remain unclear, primarily because of a lack of understanding of the conformational dynamics of the C2-containing factors and corresponding complexes. We elucidate the membrane-bound form of the C2 domain from human coagulation factor V (FV-C2) by characterizing its membrane binding the specific lipid-protein interactions. Employing all-atom molecular dynamics simulations and leveraging the highly mobile membrane-mimetic (HMMM) model, we observed spontaneous binding of FV-C2 to a phosphatidylserine (PS)-containing membrane within 2-25 ns across twelve independent simulations. FV-C2 interacted with the membrane through three loops (spikes 1-3), achieving a converged, stable orientation. Multiple HMMM trajectories of the spontaneous membrane binding provided extensive sampling and ample data to examine the membrane-induced effects on the conformational dynamics of C2 as well as specific lipid-protein interactions. Despite existing crystal structures representing presumed \"open\" and \"closed\" states of FV-C2, our results revealed a continuous distribution of structures between these states, with the most populated structures differing from both \"open\" and \"closed\" states observed in crystal environments. Lastly, we characterized a putative PS-specific binding site formed by K23, Q48, and S78 located in the groove enclosed by spikes 1-3 (PS-specificity pocket), suggesting a different orientation of a bound headgroup moiety compared to previous proposals based upon analysis of static crystal structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    膜中各种固有脂质的分子结构调节脂质-蛋白质相互作用。这些具有独特体积的不同脂质结构在脂质膜中产生不同的脂质分子堆积应力/侧向应力。大多数检查脂质包装效果的研究都使用了磷脂酰胆碱和磷脂酰乙醇胺(PE),它们是真核细胞膜的主要磷脂。相比之下,革兰氏阴性或革兰氏阳性细菌膜主要由磷脂酰甘油(PG)和PE组成,PG中每个酰基链在分子水平上的物理和热力学性质仍未解决。在这项研究中,我们使用1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸-(1'-外消旋-甘油)(POPG,16:0-18:1PG)和1-棕榈酰基-2-花生四酰基-sn-甘油-3-磷酸-(1'-外消旋-甘油)(PAPG,16:0-20:4PG),以棒状荧光探针DPH制备脂质双层(脂质体)。我们通过确定POPG或PAPG双层中DPH的旋转自由度来测量脂质填充条件。此外,我们研究了包埋在POPG或PAPG膜中时,不同的单酰基链对K通道(KcsA)结构的影响。结果表明,sn-2处单酰基链中双键数量和碳链长度的差异影响了膜的理化性质以及KcsA的结构和取向。
    The molecular structures of the various intrinsic lipids in membranes regulate lipid-protein interactions. These different lipid structures with unique volumes produce different lipid molecular packing stresses/lateral stresses in lipid membranes. Most studies examining lipid packing effects have used phosphatidylcholine and phosphatidylethanolamine (PE), which are the main phospholipids of eukaryotic cell membranes. In contrast, Gram-negative or Gram-positive bacterial membranes are composed primarily of phosphatidylglycerol (PG) and PE, and the physical and thermodynamic properties of each acyl chain in PG at the molecular level remain unresolved. In this study, we used 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1\'-rac-glycerol) (POPG, 16:0-18:1 PG) and 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phospho-(1\'-rac-glycerol) (PAPG, 16:0-20:4 PG) to prepare lipid bilayers (liposome) with the rod-type fluorescence probe DPH. We measured the lipid packing conditions by determining the rotational freedom of DPH in POPG or PAPG bilayers. Furthermore, we investigated the effect of different monoacyl chains on a K+ channel (KcsA) structure when embedded in POPG or PAPG membranes. The results revealed that differences in the number of double bonds and carbon chain length in the monoacyl chain at sn-2 affected the physicochemical properties of the membrane and the structure and orientation of KcsA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经酰胺1-磷酸(C1P)是一种脂质介质,可特异性结合并激活胞质磷脂酶A2α(cPLA2α)。为了阐明脂质环境中C1P对cPLA2α的亲和力的结构-活性关系,我们制备了一系列在亲水部分包含结构修饰的C1P类似物,并对其进行表面等离子体共振(SPR)。结果表明,酰胺上存在cPLA2α的特异性结合位点,C1P结构中的3-OH和磷酸基团。尤其是,二氢-C1P对cPLA2α的亲和力增强,表明3-羟基的氢键键合能力对于与cPLA2α的相互作用很重要。这项研究有助于了解C1P的特定结构部分在原子水平上对与cPLA2α相互作用的影响,并可能导致设计调节cPLA2α激活的药物。
    Ceramide 1-phosphate (C1P) is a lipid mediator that specifically binds and activates cytosolic phospholipase A2α (cPLA2α). To elucidate the structure-activity relationship of the affinity of C1P for cPLA2α in lipid environments, we prepared a series of C1P analogs containing structural modifications in the hydrophilic parts and subjected them to surface plasmon resonance (SPR). The results suggested the presence of a specific binding site for cPLA2α on the amide, 3-OH and phosphate groups in C1P structure. Especially, dihydro-C1P exhibited enhanced affinity for cPLA2α, suggesting the hydrogen bonding ability of 3-hydroxy group is important for interactions with cPLA2α. This study helps to understand the influence of specific structural moieties of C1P on the interaction with cPLA2α at the atomistic level and may lead to the design of drugs that regulate cPLA2α activation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电压门控钠通道(Na)是膜蛋白,可打开以促进钠离子向内流入可兴奋细胞。为了响应刺激,纳频道从休息过渡,关闭状态到打开状态,导电状态,在迅速失活之前。由于突变导致的这种功能循环失调会导致包括癫痫在内的疾病,疼痛状况,和心脏疾病,使Na通道成为重要的药理靶标。磷酸肌醇是离子通道功能的重要脂质辅因子。磷酸肌醇PI(4,5)P2通过增加通道开放的难度来降低NaZ1.4活性,加速快速失活和减缓从快速失活的恢复。使用多尺度分子动力学模拟,我们显示PI(4,5)P2在DIVS4-S5接头内的保守位点稳定地与灭活的Na结合,其将电压传感域(VSD)耦合到孔。由于NaC末端结构域被提议在从失活恢复期间也结合在这里,我们假设PI(4,5)P2通过竞争性结合该位点延长失活。在原子模拟中,PI(4,5)P2降低了DIVS4-S5接头和DIII-IV接头的迁移率,负责快速灭活,减缓通道恢复到静息状态所需的构象变化。我们进一步证明,在静息状态下,磷酸肌醇结合VSD门控电荷,这可能会锚定它们并阻碍VSD激活。我们的结果提供了一种机制,通过该机制,磷酸肌醇会改变激活的电压依赖性和从失活中恢复的速率,这是开发治疗钠相关疾病的新疗法的重要一步。
    Voltage-gated sodium channels (Naᵥ) are membrane proteins which open to facilitate the inward flux of sodium ions into excitable cells. In response to stimuli, Naᵥ channels transition from the resting, closed state to an open, conductive state, before rapidly inactivating. Dysregulation of this functional cycle due to mutations causes diseases including epilepsy, pain conditions, and cardiac disorders, making Naᵥ channels a significant pharmacological target. Phosphoinositides are important lipid cofactors for ion channel function. The phosphoinositide PI(4,5)P2 decreases Naᵥ1.4 activity by increasing the difficulty of channel opening, accelerating fast inactivation and slowing recovery from fast inactivation. Using multiscale molecular dynamics simulations, we show that PI(4,5)P2 binds stably to inactivated Naᵥ at a conserved site within the DIV S4-S5 linker, which couples the voltage-sensing domain (VSD) to the pore. As the Naᵥ C-terminal domain is proposed to also bind here during recovery from inactivation, we hypothesize that PI(4,5)P2 prolongs inactivation by competitively binding to this site. In atomistic simulations, PI(4,5)P2 reduces the mobility of both the DIV S4-S5 linker and the DIII-IV linker, responsible for fast inactivation, slowing the conformational changes required for the channel to recover to the resting state. We further show that in a resting state Naᵥ model, phosphoinositides bind to VSD gating charges, which may anchor them and impede VSD activation. Our results provide a mechanism by which phosphoinositides alter the voltage dependence of activation and the rate of recovery from inactivation, an important step for the development of novel therapies to treat Naᵥ-related diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    埃博拉病毒(EBOV)在人类中引起严重的出血热,并且在很大一部分感染者中致命。EBOV基质蛋白VP40是一种外周结合蛋白,在病毒体和病毒样颗粒(VLP)的脂质双层下形成壳。VP40是病毒组装和从宿主细胞质膜出芽所必需的。VP40是一种二聚体,可以在质膜界面处重排成低聚物,但目前还不清楚这些结构是如何形成的,以及它们是如何稳定的。因此,我们使用体外和细胞测定研究了VP40形成稳定寡聚体的能力。我们表征了VP40C末端结构域(CTD)中的两个富含赖氨酸的区域,这些区域结合了PI(4,5)P2,并在脂质结合和EBOV基质层的组装中起着不同的作用。通过氢氘交换质谱法对含有和不含脂质的VP40的广泛分析揭示,当VP40结合PI(4,5)P2时,VP40低聚物变得极其稳定。PI(4,5)P2诱导的VP40二聚体和低聚物的稳定性是VP40寡聚化和VLP从质膜释放的关键因素。VP40CTD的两个富含赖氨酸的区域在与质膜磷脂酰丝氨酸(PS)和PI(4,5)P2的相互作用方面具有不同的作用。CTD区1(Lys221,Lys224和Lys225)与PI(4,5)P2的相互作用比PS更有利,并且对于VP40寡聚化程度很重要。相比之下,区域2(Lys270,Lys274,Lys275和Lys279)通过脂质相互作用介导VP40寡聚体的稳定性,并且在VLP的释放中具有更突出的作用。
    Ebola virus (EBOV) causes severe hemorrhagic fever in humans and is lethal in a large percentage of those infected. The EBOV matrix protein viral protein 40 kDa (VP40) is a peripheral binding protein that forms a shell beneath the lipid bilayer in virions and virus-like particles (VLPs). VP40 is required for virus assembly and budding from the host cell plasma membrane. VP40 is a dimer that can rearrange into oligomers at the plasma membrane interface, but it is unclear how these structures form and how they are stabilized. We therefore investigated the ability of VP40 to form stable oligomers using in vitro and cellular assays. We characterized two lysine-rich regions in the VP40 C-terminal domain (CTD) that bind phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and play distinct roles in lipid binding and the assembly of the EBOV matrix layer. The extensive analysis of VP40 with and without lipids by hydrogen deuterium exchange mass spectrometry revealed that VP40 oligomers become extremely stable when VP40 binds PI(4,5)P2. The PI(4,5)P2-induced stability of VP40 dimers and oligomers is a critical factor in VP40 oligomerization and release of VLPs from the plasma membrane. The two lysine-rich regions of the VP40 CTD have different roles with respect to interactions with plasma membrane phosphatidylserine (PS) and PI(4,5)P2. CTD region 1 (Lys221, Lys224, and Lys225) interacts with PI(4,5)P2 more favorably than PS and is important for VP40 extent of oligomerization. In contrast, region 2 (Lys270, Lys274, Lys275, and Lys279) mediates VP40 oligomer stability via lipid interactions and has a more prominent role in release of VLPs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    可溶性黄素蛋白油酸酯水合酶(OhyA)水合不饱和脂肪酸的9-顺式双键。OhyA底物嵌入膜双层中;OhyA必须从双层中除去脂肪酸并将其封闭在活性位点中。这里,我们表明,羧基末端(CTD)中带正电荷的螺旋-转角-螺旋基序负责与带负电荷的磷脂酰甘油(PG)双层相互作用。表达与OhyA或CTD序列融合的绿色荧光蛋白的金黄色葡萄球菌细胞的超分辨率显微镜显示沿细胞边界的亚细胞定位,表明OhyA与膜相关,CTD序列足以进行膜募集。使用低温电子显微镜,我们解析了OhyA二聚体结构,并对重建体进行了3D变异性分析,以评估CTD的灵活性.我们的表面等离子体共振实验证实OhyA以纳摩尔亲和力结合PG双层,并且我们发现CTD序列具有固有的PG结合特性。我们确定含有CTD序列的肽的核磁共振结构类似于OhyA晶体结构。我们观察到来自与CTD肽的磷酸基团相邻的PG脂质体质子的分子间NOE。顺磁性MnCl2的添加表明CTD肽结合PG表面,但不插入双层中。分子动力学模拟,由定点诱变实验支持,确定螺旋-转角-螺旋中驱动膜缔合的关键残基。数据显示OhyACTD结合PG表面的磷酸盐层以获得双层包埋的不饱和脂肪酸。
    The soluble flavoprotein oleate hydratase (OhyA) hydrates the 9-cis double bond of unsaturated fatty acids. OhyA substrates are embedded in membrane bilayers; OhyA must remove the fatty acid from the bilayer and enclose it in the active site. Here, we show that the positively charged helix-turn-helix motif in the carboxy terminus (CTD) is responsible for interacting with the negatively charged phosphatidylglycerol (PG) bilayer. Super-resolution microscopy of Staphylococcus aureus cells expressing green fluorescent protein fused to OhyA or the CTD sequence shows subcellular localization along the cellular boundary, indicating OhyA is membrane-associated and the CTD sequence is sufficient for membrane recruitment. Using cryo-electron microscopy, we solved the OhyA dimer structure and conducted 3D variability analysis of the reconstructions to assess CTD flexibility. Our surface plasmon resonance experiments corroborated that OhyA binds the PG bilayer with nanomolar affinity and we found the CTD sequence has intrinsic PG binding properties. We determined that the nuclear magnetic resonance structure of a peptide containing the CTD sequence resembles the OhyA crystal structure. We observed intermolecular NOE from PG liposome protons next to the phosphate group to the CTD peptide. The addition of paramagnetic MnCl2 indicated the CTD peptide binds the PG surface but does not insert into the bilayer. Molecular dynamics simulations, supported by site-directed mutagenesis experiments, identify key residues in the helix-turn-helix that drive membrane association. The data show that the OhyA CTD binds the phosphate layer of the PG surface to obtain bilayer-embedded unsaturated fatty acids.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号