Li-CO2 Batteries

Li - CO2 电池
  • 文章类型: Journal Article
    高能量密度Li-CO2电池是大容量储能系统的有希望的候选者。然而,低循环寿命和高超电势阻碍了Li-CO2电池的发展。在这项研究中,我们提出了一种CO2基热塑性聚氨酯(CO2基TPU),具有优异的CO2吸附性能和自修复性能,以取代传统的聚偏氟乙烯(PVDF)作为阴极粘合剂。基于CO2的TPU提高了阴极/电解质界面处CO2的界面浓度,有效提高Li-CO2电池的放电电压和降低充电电压。此外,基于CO2的TPU中由氨基甲酸酯基团(-NH-COO-)固定的CO2难以穿梭并腐蚀Li阳极,减少与锂金属的CO2副反应,提高Li-CO2电池的循环性能。在这项工作中,具有CO2基TPU作为多功能粘合剂的Li-CO2电池在0.2Ag-1的电流密度下表现出52次循环的稳定循环性能,其极化电压明显低于PVDF结合的Li-CO2电池。
    High-energy-density Li-CO2 batteries are promising candidates for large-capacity energy storage systems. However, the development of Li-CO2 batteries has been hindered by low cycle life and high overpotential. In this study, we propose a CO2-based thermoplastic polyurethane (CO2-based TPU) with CO2 adsorption properties and excellent self-healing performance to replace traditional polyvinylidene fluoride (PVDF) as the cathode binder. The CO2-based TPU enhances the interfacial concentration of CO2 at the cathode/electrolyte interfaces, effectively increasing the discharge voltage and lowering the charge voltage of Li-CO2 batteries. Moreover, the CO2 fixed by urethane groups (-NH-COO-) in the CO2-based TPU are difficult to shuttle to and corrode the Li anode, minimizing CO2 side reactions with lithium metal and improving the cycling performance of Li-CO2 batteries. In this work, Li-CO2 batteries with CO2-based TPU as the multifunctional binders exhibit stable cycling performance for 52 cycles at a current density of 0.2 A g-1, with a distinctly lower polarization voltage than PVDF bound Li-CO2 batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    锂-二氧化碳(Li-CO2)电池被认为是缓解温室气体排放压力的潜在技术,但面临着缓慢的CO2氧化还原动力学和较低的能源效率。人们渴望开发高效和低成本的催化剂来提高双向活性,但仍然是一个巨大的挑战。在这里,来自废旧锂离子电池,串联催化剂被巧妙地合成,并通过内置电场(BEF)显着加速了CO2还原和逸出反应(CO2RR和CO2ER)动力学。结合理论计算和先进的表征技术,这项工作揭示了设计的界面诱导的BEF在CO2RR和CO2ER过程中调节中间体的吸附/分解,循环串联催化剂具有优异的双向活性。因此,废电子衍生串联催化剂表现出显著的双向催化性能,如0.26V的超低电压间隙和92.4%的超高能效。深深的,这项工作为从回收的废旧电子产品中制造低成本电催化剂提供了新的机会,并激发了人们对界面调节的新认识,包括但不限于BEF,以设计更好的Li-CO2电池。本文受版权保护。保留所有权利。
    Lithium-carbon dioxide (Li-CO2 ) batteries are regarded as a prospective technology to relieve the pressure of greenhouse emissions but are confronted with sluggish CO2 redox kinetics and low energy efficiency. Developing highly efficient and low-cost catalysts to boost bidirectional activities is craved but remains a huge challenge. Herein, derived from the spent lithium-ion batteries, a tandem catalyst is subtly synthesized and significantly accelerates the CO2 reduction and evolution reactions (CO2 RR and CO2 ER) kinetics with an in-built electric field (BEF). Combining with the theoretical calculations and advanced characterization techniques, this work reveals that the designed interface-induced BEF regulates the adsorption/decomposition of the intermediates during CO2 RR and CO2 ER, endowing the recycled tandem catalyst with excellent bidirectional activities. As a result, the spent electronics-derived tandem catalyst exhibits remarkable bidirectional catalytic performance, such as an ultralow voltage gap of 0.26 V and an ultrahigh energy efficiency of 92.4%. Profoundly, this work affords new opportunities to fabricate low-cost electrocatalysts from recycled spent electronics and inspires fresh perceptions of interfacial regulation including but not limited to BEF to engineer better Li-CO2 batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Li-CO2电池在碳中和的背景下引起了极大的兴趣,但是它们的实用性受到阴极缓慢的CO2氧化还原反应动力学的严重阻碍,这带来了巨大的挑战,如高超电势和低库仑效率。对于复杂的多电子转移过程,在分子或原子水平上设计催化剂以及了解电子态与性能之间的关系对于CO2氧化还原至关重要。然而,很少有人注意它。在这项工作中,使用Co3S4作为模型系统,密度泛函理论计算表明,随着Cu和硫空位的引入,Co3S4的调整后的d带和p带中心在CO2和Li物种之间杂化,分别,有利于反应物的吸附和Li2CO3的分解,实验结果进一步验证了能带工程的有效性。因此,产生了高效的双向催化剂,并显示出0.73V的超小电压间隙和92.6%的奇妙库仑效率,在类似条件下,超越了以前的催化剂。这项工作提出了一种有效的催化剂设计,并为Li-CO2电池的高性能阴极催化剂材料提供了新的见解。本文受版权保护。保留所有权利。
    Li-CO2 batteries arouse great interest in the context of carbon neutralization, but their practicability is severely hindered by the sluggish CO2 redox reaction kinetics at the cathode, which brings about formidable challenges such as high overpotential and low Coulombic efficiency. For the complex multi-electron transfer process, the design of catalysts at the molecular or atomic level and the understanding of the relationship between electron state and performance are essential for the CO2 redox. However, little attention is paid to it. In this work, using Co3 S4 as a model system, density functional theory (DFT) calculations reveal that the adjusted d-band and p-band centers of Co3 S4 with the introduction of Cu and sulfur vacancies are hybridized between CO2 and Li species, respectively, which is conducive to the adsorption of reactants and the decomposition of Li2 CO3 , and the experimental results further verify the effectiveness of energy band engineering. As a result, a highly efficient bidirectional catalyst is produced and shows an ultra-small voltage gap of 0.73 V and marvelous Coulombic efficiency of 92.6%, surpassing those of previous catalysts under similar conditions. This work presents an effective catalyst design and affords new insight into the high-performance cathode catalyst materials for Li-CO2 batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    锂-二氧化碳(Li-CO2)电池技术为碳捕获和能量存储提供了有希望的机会。尽管在Li-CO2电池方面付出了巨大努力,复杂的电极/电解质/CO2三相界面过程仍然知之甚少,特别是在纳米级。这里,使用原位原子力显微镜和激光共聚焦显微镜-微分干涉对比显微镜,我们在纳米尺度上直接观察了Li-CO2电池中的CO2转化过程,并根据实时观察进一步揭示了激光调谐反应途径。放电期间,双组分复合材料,Li2CO3/C,通过3D渐进生长模型沉积为微米大小的簇,在随后的再充电过程中,然后是3D分解路径。当细胞在激光(λ=405nm)照射下工作时,密集堆积的Li2CO3/C薄片在放电过程中迅速沉积。充电后,它们主要在薄片和电极的界面处分解,将自身从电极分离并导致不可逆的容量退化。原位拉曼表明,激光促进了难溶性中间体的形成,Li2C2O4,进而影响Li2CO3/C的生长/分解途径和电池性能。我们的发现为Li-CO2电池中的界面演化和激光调谐的CO2转化反应提供了机械见解。这可以激发在先进的电化学装置中监测和控制多步和多相界面反应的策略。
    Lithium-carbon dioxide (Li-CO2 ) battery technology presents a promising opportunity for carbon capture and energy storage. Despite tremendous efforts in Li-CO2 batteries, the complex electrode/electrolyte/CO2 triple-phase interfacial processes remain poorly understood, in particular at the nanoscale. Here, using in situ atomic force microscopy and laser confocal microscopy-differential interference contrast microscopy, we directly observed the CO2 conversion processes in Li-CO2 batteries at the nanoscale, and further revealed a laser-tuned reaction pathway based on the real-time observations. During discharge, a bi-component composite, Li2 CO3 /C, deposits as micron-sized clusters through a 3D progressive growth model, followed by a 3D decomposition pathway during the subsequent recharge. When the cell operates under laser (λ=405 nm) irradiation, densely packed Li2 CO3 /C flakes deposit rapidly during discharge. Upon the recharge, they predominantly decompose at the interfaces of the flake and electrode, detaching themselves from the electrode and causing irreversible capacity degradation. In situ Raman shows that the laser promotes the formation of poorly soluble intermediates, Li2 C2 O4 , which in turn affects growth/decomposition pathways of Li2 CO3 /C and the cell performance. Our findings provide mechanistic insights into interfacial evolution in Li-CO2 batteries and the laser-tuned CO2 conversion reactions, which can inspire strategies of monitoring and controlling the multistep and multiphase interfacial reactions in advanced electrochemical devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    作为一种高能量密度的电力系统,锂-二氧化碳(Li-CO2)电池在解决化石燃料危机问题和缓解温室效应方面发挥着重要作用。然而,CO2转化动力学缓慢和排放产物难以分解,阻碍了大容量的实现,小的过电位,和电池的长寿命,这就需要探索有效的催化剂来解决这些问题。在这次审查中,主要关注催化剂的热点调控策略,其中包括活性位点的调节,微结构的设计,和构图的构造。系统地阐述了具有热点调控策略的有希望的催化研究进展。还提出了关键挑战,并提出了为实际先进的Li-CO2电池的高效催化剂的合理设计提供有用指导的观点。
    As a high energy density power system, lithium-carbon dioxide (Li-CO2 ) batteries play an important role in addressing the fossil fuel crisis issues and alleviating the greenhouse effect. However, the sluggish transformation kinetic of CO2 and the difficult decomposition of discharge products impede the achievement of large capacity, small overpotential, and long life span of the batteries, which require exploring efficient catalysts to resolve these problems. In this review, the main focus is on the hot spot regulation strategies of the catalysts, which include the modulation of the active sites, the designing of microstructure, and the construction of composition. The recent progress of promising catalysis with hot spot regulated strategies is systematically addressed. Critical challenges are also presented and perspectives to provide useful guidance for the rational design of highly efficient catalysts for practical advanced Li-CO2 batteries are proposed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    将能量存储与温室气体固定集成在一起的Li-CO2电池在追求碳中和方面受到了极大的关注。然而,绝缘和不溶性Li2CO3在阴极表面的循环积累严重抑制了电池的循环能力,特别是在高深度的放电/充电。在这里,我们通过将Ru纳米颗粒嵌入介孔中空碳球的壳中来设计和制造微反应器型催化剂。我们表明,空腔和介孔壳对于一致提供高活性以催化可逆的Li2CO3形成/分解是必不可少的。这种独特的结构确保了在充电期间被外部Li2CO3沉积物掩盖的Ru位点可以通过与预储存的电解质一起工作以建立内部反应路径来恢复放电的氧化还原过程。如此制造的Li-CO2电池表现出在0.5Ahg-1下的1085次循环和在1Ahg-1下在2Ahg-1下的326次循环的显著循环能力,胜过大多数文献报道。这项研究强调了一种智能催化剂设计,通过“进出”策略提高Li-CO2电池的可逆性和可循环性。
    Li-CO2 batteries that integrate energy storage with greenhouse gas fixation have received a great deal of attention in the pursuit of carbon neutrality. However, cyclic accumulation of the insulative and insoluble Li2CO3 on the cathode surface severely restrains the battery cyclability, especially under a high depth of discharge/charge. Herein, we design and fabricate a microreactor-type catalyst by embedding Ru nanoparticles into the shells of mesoporous hollow carbon spheres. We show that both the hollow cavity and mesoporous shell are indispensable for concertedly furnishing a high activity to catalyze reversible Li2CO3 formation/decomposition. This unique structure ensures that the Ru sites masked by exterior Li2CO3 deposits during charging can resume the redox process of discharge by working with the prestored electrolyte to establish an inner reaction path. The thus fabricated Li-CO2 batteries demonstrate remarkable cyclability of 1085 cycles under 0.5 Ah g-1 and 326 cycles under 2 Ah g-1 at 1 A g-1, outshining most of the literature reports. This study highlights a smart catalyst design to boost the reversibility and cyclability of Li-CO2 batteries through an \"in & out\" strategy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    近年来,高能量密度的Li-CO2电池引起了人们的极大兴趣,有限的阴极催化性能和可执行的循环性能阻碍了大规模应用。在这里,制备了具有丰富多孔结构的Mo3P/MoMott-Schottky异质结纳米棒电催化剂,并将其用作Li-CO2电池的阴极。Mo3P/Mo阴极具有10.577mAhg-1的超高放电比容量,0.15V的低极化电压,高能效达94.7%。Mo和Mo3P形成的Mott-Schottky异质结驱动电子转移,优化表面电子结构,有利于加速界面反应动力学。特别是,在放电过程中,C2O42-中间体与Mo原子结合在催化剂表面形成稳定的Mo-O偶联桥,有效地促进了Li2C2O4产品的形成和稳定。此外,Mott-Schottky异质结与Li2C2O4之间的Mo-O耦合桥的构建促进了放电产物的可逆形成和分解,并优化了Li-CO2电池的极化性能。这项工作为开发用于高性能Li-CO2电池的异质结构工程电催化剂提供了另一条途径。
    Li-CO2 battery with high energy density has aroused great interest recently, large-scale applications are hindered by the limited cathode catalysis performance and execrably cycle performance. Herein, Mo3 P/Mo Mott-Schottky heterojunction nanorod electrocatalyst with abundant porous structure is fabricated and served as cathodes for Li-CO2 batteries. The Mo3 P/Mo cathodes exhibit ultra-high discharge specific capacity of 10 577 mAh g-1 , low polarization voltage of 0.15 V, and high energy efficiency of up to 94.7%. Mott-Schottky heterojunction formed by Mo and Mo3 P drives electron transfer and optimizes the surface electronic structure, which is beneficial to accelerate the interface reaction kinetics. Distinctively, during the discharge process, the C2 O4 2- intermediates combine with Mo atoms to form a stable Mo-O coupling bridge on the catalyst surface, which effectively facilitate the formation and stabilization of Li2 C2 O4 products. In addition, the construction of the Mo-O coupling bridge between the Mott-Schottky heterojunction and Li2 C2 O4 promotes the reversible formation and decomposition of discharge products and optimizes the polarization performance of the Li-CO2 battery. This work provides another pathway for the development of heterostructure engineering electrocatalysts for high-performance Li-CO2 batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Li-CO2电池在CO2利用和储能方面都具有巨大的潜力,但其实际应用受到低能效和短循环寿命的限制。需要高效的阴极催化剂来解决这个问题。在这里,这项工作报告了固定在碳纳米管(CNT)上的酞菁镍(NiPc)的分子分散电催化剂(MDE)作为Li-CO2电池的阴极催化剂。分散的NiPc分子有效地催化CO2还原,虽然导电和多孔碳纳米管网络促进CO2析出反应,导致与NiPc和CNT混合物相比增强的放电和充电性能。NiPc上的八氰基取代(NiPc-CN)进一步增强了分子与CNT之间的相互作用,导致更好的循环稳定性。具有NiPc-CNMDE阴极的Li-CO2电池显示出2.72V的高放电电压和1.4V的小放电-充电电位间隙,可以稳定工作超过120个周期。通过实验表征证实了阴极的可逆性。这项工作为开发用于Li-CO2电池阴极的分子催化剂奠定了基础。
    The Li-CO2 battery has great potential for both CO2 utilization and energy storage, but its practical application is limited by low energy efficiency and short cycle life. Efficient cathode catalysts are needed to address this issue. Herein, this work reports on molecularly dispersed electrocatalysts (MDEs) of nickel phthalocyanine (NiPc) anchored on carbon nanotubes (CNTs) as the cathode catalyst for Li-CO2 batteries. The dispersed NiPc molecules efficiently catalyze CO2 reduction, while the conductive and porous CNTs networks facilitate CO2 evolution reaction, leading to enhanced discharging and charging performance compared to the NiPc and CNTs mixture. Octa-cyano substitution on NiPc (NiPc-CN) further enhances the interaction between the molecule and CNTs, resulting in better cycling stability. The Li-CO2 battery with the NiPc-CN MDE cathode shows a high discharge voltage of 2.72 V and a small discharging-charging potential gap of 1.4 V, and can work stably for over 120 cycles. The reversibility of the cathode is confirmed by experimental characterizations. This work lays a foundation for the development of molecular catalysts for Li-CO2 battery cathodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    可充电锂-二氧化碳(Li-CO2)电池是用于CO2回收和能量存储的有前途的设备。然而,热力学稳定且电绝缘的放电产物(DP)(例如,Li2CO3)沉积在阴极需要严格的条件才能完全分解,导致大的充电极化和较差的电池可逆性。尽管在阴极设计和电解质优化方面取得了进展,DPs的重要性通常被低估。因此,有必要重新审视DP在Li-CO2电池中的作用,以提高电池的整体性能。这里,我们第一次报道,Li-CO2电池中DP的关键和系统综述。我们评估了DPs形成和分解反应的基本原理,并展示了对电池性能的影响,包括:过电位,容量和稳定性,并强调了排放产品管理的必要性。我们评估了实用的原位/操作技术,以表征反应中间体和相应的DP,以进行机理研究。此外,证明了可实现的控制措施以促进DP的分解,从而提供电池设计原理并提高电池性能。这项工作的发现将加深对Li-CO2电池电化学的理解并促进实际应用。本文受版权保护。保留所有权利。
    Rechargeable lithium-carbon dioxide (Li-CO2 ) batteries are promising devices for CO2 recycling and energy storage. However, thermodynamically stable and electrically insulating discharge products (DPs) (e.g., Li2 CO3 ) deposited at cathodes require rigorous conditions for completed decomposition, resulting in large recharge polarization and poor battery reversibility. Although progress has been achieved in cathode design and electrolyte optimization, the significance of DPs is generally underestimated. Therefore, it is necessary to revisit the role of DPs in Li-CO2 batteries to boost overall battery performance. Here, a critical and systematic review of DPs in Li-CO2 batteries is reported for the first time. Fundamentals of reactions for formation and decomposition of DPs are appraised; impacts on battery performance including overpotential, capacity, and stability are demonstrated; and the necessity of discharge product management is highlighted. Practical in situ/operando technologies are assessed to characterize reaction intermediates and the corresponding DPs for mechanism investigation. Additionally, achievable control measures to boost the decomposition of DPs are evidenced to provide battery design principles and improve the battery performance. Findings from this work will deepen the understanding of electrochemistry of Li-CO2 batteries and promote practical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    迄今为止,贵金属电子结构对CO2反应活性的影响尚不清楚,在CO2呼吸电池中设计高效催化剂仍然缺乏明确的筛选标准。在这里,通过优先考虑关键中间体Li2CO3的分解,我们发现了一个由dx2-y2轨道态和电负性组成的内在描述符,用于预测高性能阴极材料。作为一个示范,通过快速激光划片技术制造了一系列石墨烯负载的贵金属(NM@G)作为阴极。与初步预测一致,Pd@G表现出超低的过电位(0.41V),以及高达1400小时的卓越循环性能。此外,NM@G上的整体热力学反应途径证实了所建立的内在描述符的可靠性。贵金属阴极的电子特性与Li-CO2电池的性能之间的关系的这一基本发现为设计用于金属-CO2电池的非常有效的阴极材料提供了新的途径。本文受版权保护。保留所有权利。
    To date, the effect of noble metal (NM) electronic structures on CO2 reaction activity remains unknown, and explicit screening criteria are still lacking for designing highly efficient catalysts in CO2 -breathing batteries. Herein, by preferentially considering the decomposition of key intermediate Li2 CO3 , an intrinsic descriptor constituted of the d x 2 - y 2 ${{\\rm{d}}}_{{x}^2 - {y}^2}$ orbital states and the electronegativity for predicting high-performance cathode material are discovered. As a demonstration, a series of graphene-supported noble metals (NM@G) as cathodes are fabricated via a fast laser scribing technique. Consistent with the preliminary prediction, Pd@G exhibits an ultralow overpotential (0.41 V), along with superior cycling performance up to 1400 h. Moreover, the overall thermodynamic reaction pathways on NM@G confirm the reliability of the established intrinsic descriptor. This basic finding of the relationship between the electronic properties of noble metal cathodes and the performance of Li-CO2 batteries provides a novel avenue for designing remarkably efficient cathode materials for metal-CO2 batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号