Lactonic sophorolipids

  • 文章类型: Journal Article
    背景:酵母Starmerellabombicola以其高效的槐糖脂生产而闻名,达到(超过)200g/L和2g/(Lh)的滴度和生产率,分别。这种固有的效率导致了槐糖脂的商业化。虽然槐糖脂生物合成途径已经在几年前被阐明,在这项研究中,它被重新审视,真正的关键中间体被揭示。
    结果:最近,对过去开发和评估的Starmerellabombicola菌株进行了重新评估,揭示了意想不到的发现。在槐糖脂生物合成基因簇中编码的AT酶是已知的乙酰化槐糖脂的唯一描述的酶,而由SBLE基因编码的SBLE酶被描述为催化(乙酰化)酸性槐糖脂转化为内酯性槐糖脂。描述了两个基因的双重敲除,以导致生成bolaform槐糖脂。然而,用相应的S.bombicola菌株Δsble进行的新实验,ΔatΔsble,和Δat揭示了与当前对SL途径的理解不一致。观察到,Δsble菌株主要产生具有较高乙酰化度的bolaform槐糖脂,而不是酸性槐糖脂。此外,Δat菌株主要产生具有较低乙酰化度的苦参脂和乳酸苦参脂,而ΔatΔsble菌株主要产生具有较低乙酰化度的bolaform槐糖脂。这些结果表明,AT酶不是唯一的酶负责的乙酰化的槐糖脂,而SBLE酶对bolaform糖脂进行分子内酯交换反应,而不是对酸性槐糖脂进行酯化反应。这些发现,加上最近的体外数据,导致我们修改了槐糖脂生物合成途径。
    结论:Bolaform槐糖脂而不是酸性槐糖脂是乳酸槐糖脂生物合成途径中的关键中间体。在细胞外S.bombicola野生型培养液中发现了非常少量的Bolaform槐糖脂,因为它们可以非常有效地转化为内酯的槐糖脂。而酸性槐糖脂积累,因为它们不能被转化。此外,槐糖脂的乙酰化并非仅由槐糖脂生物合成基因簇中编码的AT酶进行,而波拉形式的槐糖脂的乙酰化会促进其酯交换。这些发现导致了工业相关的槐糖脂生物合成途径的修订。
    BACKGROUND: The yeast Starmerella bombicola is renowned for its highly efficient sophorolipid production, reaching titers and productivities of (over) 200 g/L and 2 g/(L h), respectively. This inherent efficiency has led to the commercialization of sophorolipids. While the sophorolipid biosynthetic pathway has been elucidated a few years ago, in this study, it is revisited and true key intermediates are revealed.
    RESULTS: Recently, Starmerella bombicola strains developed and evaluated in the past were reevaluated unveiling unexpected findings. The AT enzyme encoded in the sophorolipid biosynthetic gene cluster is the only described enzyme known to acetylate sophorolipids, while the SBLE enzyme encoded by the SBLE gene is described to catalyze the conversion of (acetylated) acidic sophorolipids into lactonic sophorolipids. A double knockout of both genes was described to result in the generation of bolaform sophorolipids. However, new experiments performed with respective S. bombicola strains Δsble, Δat Δsble, and ∆at revealed inconsistencies with the current understanding of the SL pathway. It was observed that the ∆sble strain produces mainly bolaform sophorolipids with higher acetylation degrees instead of acidic sophorolipids. Furthermore, the ∆at strain produces predominantly bolaform sophorolipids and lactonic sophorolipids with lower acetylation degrees, while the ∆at ∆sble strain predominantly produces bolaform sophorolipids with lower acetylation degrees. These results indicate that the AT enzyme is not the only enzyme responsible for acetylation of sophorolipids, while the SBLE enzyme performs an intramolecular transesterification reaction on bolaform glycolipids instead of an esterification reaction on acidic sophorolipids. These findings, together with recent in vitro data, led us to revise the sophorolipid biosynthetic pathway.
    CONCLUSIONS: Bolaform sophorolipids instead of acidic sophorolipids are the key intermediates in the biosynthetic pathway towards lactonic sophorolipids. Bolaform sophorolipids are found in very small amounts in extracellular S. bombicola wild type broths as they are very efficiently converted into lactonic sophorolipids, while acidic sophorolipids build up as they cannot be converted. Furthermore, acetylation of sophorolipids is not exclusively performed by the AT enzyme encoded in the sophorolipid biosynthetic gene cluster and acetylation of bolaform sophorolipids promotes their transesterification. These findings led to the revision of the industrially relevant sophorolipid biosynthetic pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:槐糖脂(SL)是一类天然的,可生物降解的表面活性剂,成为环保清洁产品的成分,化妆品和纳米技术的应用。大规模生产依赖于使用酵母Starmerellabombicola的发酵,该酵母从可再生资源自然产生高滴度的SL。所得产物通常是酸性和内酯同源物的细胞外混合物。以前,我们发现了一种酯酶,称为Starmerellabombicola内酯酯酶(SBLE),被认为是直接使用酸性SL作为底物的细胞外反向内酯酶。
    结果:我们在这里展示了基于新获得的纯底物,HPLC和质谱分析,SBLE的实际底物实际上是BolaSL,表明SBLE实际上催化分子内酯交换反应。BolaSL含有与脂肪酰基连接的第二槐糖,该脂肪酰基在内酯化过程中充当离去基团。
    结论:Starmerellabombicola内酯酯酶将酸性SL转化为内酯SL的生物合成功能应修改为“转酯酶”,其中bolaSL是真正的中间体。这一见解为开发设计型表面活性剂的替代工程策略铺平了道路。
    BACKGROUND: Sophorolipids (SLs) are a class of natural, biodegradable surfactants that found their way as ingredients for environment friendly cleaning products, cosmetics and nanotechnological applications. Large-scale production relies on fermentations using the yeast Starmerella bombicola that naturally produces high titers of SLs from renewable resources. The resulting product is typically an extracellular mixture of acidic and lactonic congeners. Previously, we identified an esterase, termed Starmerella bombicola lactone esterase (SBLE), believed to act as an extracellular reverse lactonase to directly use acidic SLs as substrate.
    RESULTS: We here show based on newly available pure substrates, HPLC and mass spectrometric analysis, that the actual substrates of SBLE are in fact bola SLs, revealing that SBLE actually catalyzes an intramolecular transesterification reaction. Bola SLs contain a second sophorose attached to the fatty acyl group that acts as a leaving group during lactonization.
    CONCLUSIONS: The biosynthetic function by which the Starmerella bombicola \'lactone esterase\' converts acidic SLs into lactonic SLs should be revised to a \'transesterase\' where bola SL are the true intermediate. This insights paves the way for alternative engineering strategies to develop designer surfactants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Liver cancer, one of the most common types of cancer in the world, is the second leading cause of death for cancer patients. For liver cancer, there is an urgent need for an effective treatment with no or less toxic side effects. Lactonic sophorolipids (LSL), as a potential anticancer drug, has attracted wide attention of pharmaceutical researchers with its good biological activities. The effects of LSL and cell death inhibitors were measured by MTT test on HepG2 cells. Meanwhile, the morphology of the cells was observed under a microscope. The apoptosis rate was detected by flow cytometry, and the expression levels of enzyme activity of Caspase-3 and Caspase-9 were measured by detection kits. Meanwhile, mRNA levels of Apaf-1, Caspase-3, Bax, and Bcl-2 were measured by quantitative real-time RT-PCR; protein levels of Caspase-3, Cleaved Caspase-3, Bax, and Bcl-2 were measured by western blot. LSL can inhibit the proliferation of cells, and it is possible to induce apoptosis in cells. The HepG2 cells with LSL co-culture exhibited typical apoptotic morphology, and the expression levels of enzyme activity of Caspase-3 and Caspase-9 increased (P< 0.05). We also found that LSL increases cell apoptosis rate and regulates the expression of genes and proteins associated with apoptosis through the Caspase-3 pathway. These results indicate that LSL may be one of the potential drug candidates to inhibit the proliferation and induce apoptosis in HepG2 cells.Key points• LSL, which is of good biological activities such as anti-bacterium, virus elimination, and inflammatory response elimination, has been firstly used to intervene in vitro to investigate its effect on HepG2 cell proliferation.• LSL can inhibit the proliferation of cells, and it is possible to induce apoptosis in HepG2 cells through the Caspase-3 pathway.• The mechanism of LSL action on HepG2 cell proliferation was firstly also discussed, which provides a certain experimental reference for the clinical treatment of liver cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    This study analyzes the equilibrium and dynamic surface tension curves of acidic and lactonic sophorolipids (SLs). It also investigates the dilational properties of the surface adsorptive film. Given their high hydrophobicity, lactonic SLs have lower surface tension and critical micelle concentration (CMC) than acidic SLs. As cNaCl increases, the CMC values and the corresponding surface tension (γcmc) of acidic and lactonic SLs decrease gradually. For dynamic surface properties, lactonic SLs have a high diffusive rate from the bulk phase to the subsurface. At 0.05 CMC, the initial adsorption of acidic and lactonic SLs is diffusion-controlled. As csurfactant increases, the values of diffusion coefficient (D) show a downward trend, and the mechanism is mixed kinetic diffusion. Adding NaCl increases the D values of acidic and lactonic SLs, and the influence degree for acidic SLs is more considerable than that for lactonic SLs. As frequency (ω) increases (0.005∼0.5 Hz), the dilational elasticity increases, and the phase angle decrease. The dilational elasticity of acidic and lactonic SLs shows a low-frequency dependence. Compared with acidic SLs, lactonic SLs have better dynamic surface properties, which decrease the gradient of interfacial tension because of the interface deformation. Consequently, the lactonic SLs exhibit a relatively small dilational elasticity. At 0.1 Hz, the dilational elasticity of acidic and lactonic SLs reaches the maximum values at 0.05CMC and 0.075CMC, respectively. When csurfactant rises near CMC, the phase angle increases obviously, and the dilational elasticity further decreases. This result is attributed to the fast exchange of surfactant molecules between the interface and the micelles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Evaluation Study
    OBJECTIVE: To assess the efficacy of rhamnolipid (mixture of monorhamnolipid and dirhamnolipid congeners), purified monorhamnolipid, dirhamnolipid and lactonic sophorolipid biosurfactants against pathogens important for oral hygiene.
    RESULTS: Acquired and produced biosurfactants were fully characterized to allow the antimicrobial activity to be assigned to the biosurfactant congeners. Antimicrobial activity was assessed using the resazurin-aided microdilution method. Mixed rhamnolipid JBR425 (MR) and lactonic sophorolipids (LSLs) demonstrated the lowest minimum inhibitory concentration (MIC) which ranged between 100 and 400 μg ml-1 against Streptococcus mutans, Streptococcus oralis, Actinomyces naeslundii, Neisseria mucosa and Streptococcus sanguinis. Combining these biosurfactants with standard antimicrobial agents namely chlorhexidine, sodium lauryl sulphate, tetracycline HCl and ciprofloxacin showed a dramatic drop in the MIC values. In addition, in vitro studies demonstrated the biosurfactants\' ability to prevent and disrupt oral pathogens biofilms. The increased permeability of microorganisms treated with biosurfactant, as shown using bisbenzimide dye, in part explains the inhibition effect.
    CONCLUSIONS: The results demonstrate that rhamnolipids and LSLs have the ability to inhibit oral pathogens both in planktonic and oral biofilm states.
    CONCLUSIONS: The findings indicate the potential value of biosurfactants for both oral hygiene and the pharmaceutical industries since there is a serious need to reduce the reliance on synthetic antimicrobials and antibiotics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号