LINC complex

LINC 复合物
  • 文章类型: Journal Article
    细胞核不仅是DNA的储存库,也是细胞和核机械转导的中心。从核变形到机械传感组件与遗传控制之间的相互作用,细胞核处于机械力和细胞功能的纽带。理解作用在细胞核上的应力,其机械性能,因此,它们对基因表达的影响对于欣赏其机械敏感性功能至关重要。在这次审查中,我们检查了核动力传导的许多元素,并讨论对细胞健康和疾病状态的影响。通过描述核机械感觉的基础过程并分析其对基因调控的影响,该审查努力为研究生理学和疾病中的核力学开辟新的途径。
    The nucleus not only is a repository for DNA but also a center of cellular and nuclear mechanotransduction. From nuclear deformation to the interplay between mechanosensing components and genetic control, the nucleus is poised at the nexus of mechanical forces and cellular function. Understanding the stresses acting on the nucleus, its mechanical properties, and their effects on gene expression is therefore crucial to appreciate its mechanosensitive function. In this review, we examine many elements of nuclear mechanotransduction, and discuss the repercussions on the health of cells and states of illness. By describing the processes that underlie nuclear mechanosensation and analyzing its effects on gene regulation, the review endeavors to open new avenues for studying nuclear mechanics in physiology and diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    真核细胞通过保守的分子桥将核骨架连接到细胞骨架上,称为LINC复合体。LINC复合物的核心包含SUN结构域和KASH结构域蛋白,其在核包膜腔内直接缔合。链内和链间二硫键,随着KASH域蛋白质相互作用,两者都有助于脊椎动物SUN结构域蛋白的三级和四级结构。这些键的重要性以及PDIs(蛋白质二硫键异构酶)在LINC复合物生物学中的作用尚不清楚。还原性和非还原性SDS-PAGE分析显示SUN2同二聚体在非致瘤性乳腺上皮MCF10A细胞中普遍存在,但不在浸润性三阴性乳腺癌MDA-MB-231细胞系中。此外,超分辨率显微镜显示MCF10A的SUN2染色改变,但不是在MDA-MB-231细胞核中,在还原剂暴露时。虽然PDIA1水平在两种细胞系中相似,MDA-MB-231细胞PDI活性的药理学抑制导致SUN结构域蛋白下调,以及Nesprin-2从细胞核的位移。这种抑制也引起核周细胞骨架结构和层板蛋白下调的变化,并在空间限制性的体外环境中增加了PDI抑制的MDA-MB-231细胞的侵袭力,与未处理的细胞相比。这些结果强调了PDIs在调节LINC复杂生物学中的关键作用,蜂窝架构,生物力学,和入侵。
    Eukaryotic cells tether the nucleoskeleton to the cytoskeleton via a conserved molecular bridge, called the LINC complex. The core of the LINC complex comprises SUN-domain and KASH-domain proteins that directly associate within the nuclear envelope lumen. Intra- and inter-chain disulphide bonds, along with KASH-domain protein interactions, both contribute to the tertiary and quaternary structure of vertebrate SUN-domain proteins. The significance of these bonds and the role of PDIs (protein disulphide isomerases) in LINC complex biology remains unclear. Reducing and non-reducing SDS-PAGE analyses revealed a prevalence of SUN2 homodimers in non-tumorigenic breast epithelia MCF10A cells, but not in the invasive triple-negative breast cancer MDA-MB-231 cell line. Furthermore, super-resolution microscopy revealed SUN2 staining alterations in MCF10A, but not in MDA-MB-231 nuclei, upon reducing agent exposure. While PDIA1 levels were similar in both cell lines, pharmacological inhibition of PDI activity in MDA-MB-231 cells led to SUN-domain protein down-regulation, as well as Nesprin-2 displacement from the nucleus. This inhibition also caused changes in perinuclear cytoskeletal architecture and lamin downregulation, and increased the invasiveness of PDI-inhibited MDA-MB-231 cells in space-restrictive in vitro environments, compared to untreated cells. These results emphasise the key roles of PDIs in regulating LINC complex biology, cellular architecture, biomechanics, and invasion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    血管内皮细胞排列在所有血管的内表面,它们在整个生命周期中都暴露于极化的机械力。基底基质相互作用和根尖血流诱导的剪切应力调节血管发育,重塑,和维持血管稳态。这些相互作用的破坏导致功能障碍和血管病变,虽然力如何被感知和整合以影响内皮细胞的行为还不完全清楚。最近,内皮细胞细胞核已成为参与血管机械转导的重要的力转导细胞器。通过与细胞-细胞和细胞-基质连接的通信。LINC复合体,由SUN和nesprin蛋白组成,跨越核膜并连接核层,核封套,和细胞骨架。在这里,我们回顾了LINC复合物在内皮细胞机械转导中的参与,描述每个LINC复杂组件的独特和重叠功能,并考虑新出现的证据表明两种主要的SUN蛋白,SUN1和SUN2协调复杂的相互作用,向外延伸到细胞-细胞和细胞-基质连接,并向内延伸到细胞核和染色质内的相互作用。我们讨论了这些发现与血管病变有关,例如Hutchinson-Gilford早衰综合征,伴有心血管损害的过早衰老障碍。对LINC复合物调节和功能的更多了解将有助于了解细胞核如何参与内皮细胞力感知以及功能障碍如何导致心血管疾病。
    Vascular endothelial cells line the inner surface of all blood vessels, where they are exposed to polarized mechanical forces throughout their lifespan. Both basal substrate interactions and apical blood flow-induced shear stress regulate blood vessel development, remodeling, and maintenance of vascular homeostasis. Disruption of these interactions leads to dysfunction and vascular pathologies, although how forces are sensed and integrated to affect endothelial cell behaviors is incompletely understood. Recently the endothelial cell nucleus has emerged as a prominent force-transducing organelle that participates in vascular mechanotransduction, via communication to and from cell-cell and cell-matrix junctions. The LINC complex, composed of SUN and nesprin proteins, spans the nuclear membranes and connects the nuclear lamina, the nuclear envelope, and the cytoskeleton. Here we review LINC complex involvement in endothelial cell mechanotransduction, describe unique and overlapping functions of each LINC complex component, and consider emerging evidence that two major SUN proteins, SUN1 and SUN2, orchestrate a complex interplay that extends outward to cell-cell and cell-matrix junctions and inward to interactions within the nucleus and chromatin. We discuss these findings in relation to vascular pathologies such as Hutchinson-Gilford progeria syndrome, a premature aging disorder with cardiovascular impairment. More knowledge of LINC complex regulation and function will help to understand how the nucleus participates in endothelial cell force sensing and how dysfunction leads to cardiovascular disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Sad1和UNC84(SUN)和Klarsicht,ANC-1和Syne同源性(KASH)蛋白在核外围相互作用,形成核骨架和细胞骨架(LINC)复合物的接头,跨越核膜(NE)并连接细胞骨架与核内部。现在有据可查的是,几种细胞功能依赖于LINC复合物的形成,包括细胞分化和迁移。有趣的是,最近的研究表明,SUN蛋白参与细胞过程,而这些过程可能不需要与KASH蛋白结合。基于最近的研究,我们详细阐述了SUN蛋白可能执行LINC无关功能的假设,并讨论了当SUN蛋白不形成LINC复合物时可能允许它们在INM发挥作用的方式。
    Sad1 and UNC84 (SUN) and Klarsicht, ANC-1, and Syne homology (KASH) proteins interact at the nuclear periphery to form the linker of nucleoskeleton and cytoskeleton (LINC) complex, spanning the nuclear envelope (NE) and connecting the cytoskeleton with the nuclear interior. It is now well-documented that several cellular functions depend on LINC complex formation, including cell differentiation and migration. Intriguingly, recent studies suggest that SUN proteins participate in cellular processes where their association with KASH proteins may not be required. Building on this recent research, we elaborate on the hypothesis that SUN proteins may perform LINC-independent functions and discuss the modalities that may allow SUN proteins to function at the INM when they are not forming LINC complex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞器的适当分布可以在移动细胞的性能中起重要作用。在秀丽隐杆线虫性腺形态发生过程中,前导远端细胞(DTC)的细胞核总是在前面发现,然而,这种本地化的意义是未知的。这里,我们确定了将细胞核保持在前端的分子机制,尽管有摩擦力把它向后推。Klarsicht/ANC-1/Syne同源性(KASH)结构域蛋白UNC-83将细胞核连接到沿着极化的无核微管网络移动的运动蛋白驱动蛋白1。有趣的是,破坏核定位本身并不影响性腺形态发生。然而,减少核错位顶部的肌动球蛋白收缩力导致了戏剧性的表型:DTC分裂和性腺分叉。双重击倒的长期实时成像显示,当性腺试图进行计划的掉头时,由于滞后的细胞核,DTC被拉伸,直到它分裂成一个有核细胞和一个去核的细胞质,每个人都领导着一个独立的性腺臂。值得注意的是,去核的细胞质具有极性并侵入,但它只能暂时支持生殖细胞的增殖。基于定性的生物物理模型,我们得出的结论是,前导细胞采用两种互补的机械方法来保持其完整性,并在复杂的3D环境中导航时确保适当的器官形态发生:微管马达的主动核定位和肌动球蛋白驱动的皮质收缩性。
    Proper distribution of organelles can play an important role in a moving cell\'s performance. During C. elegans gonad morphogenesis, the nucleus of the leading distal tip cell (DTC) is always found at the front, yet the significance of this localization is unknown. Here, we identified the molecular mechanism that keeps the nucleus at the front, despite a frictional force that pushes it backward. The Klarsicht/ANC-1/Syne homology (KASH) domain protein UNC-83 links the nucleus to the motor protein kinesin-1 that moves along a polarized acentrosomal microtubule network. Interestingly, disrupting nuclear positioning on its own did not affect gonad morphogenesis. However, reducing actomyosin contractility on top of nuclear mispositioning led to a dramatic phenotype: DTC splitting and gonad bifurcation. Long-term live imaging of the double knockdown revealed that, while the gonad attempted to perform a planned U-turn, the DTC was stretched due to the lagging nucleus until it fragmented into a nucleated cell and an enucleated cytoplast, each leading an independent gonadal arm. Remarkably, the enucleated cytoplast had polarity and invaded, but it could only temporarily support germ cell proliferation. Based on a qualitative biophysical model, we conclude that the leader cell employs two complementary mechanical approaches to preserve its integrity and ensure proper organ morphogenesis while navigating through a complex 3D environment: active nuclear positioning by microtubule motors and actomyosin-driven cortical contractility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肌萎缩侧索硬化症(ALS)是一种主要影响运动神经元的神经退行性疾病,导致进行性肌肉无力和失去自愿肌肉控制。虽然ALS的确切原因尚未完全了解,新出现的研究表明,核膜(NE)的功能障碍可能有助于疾病的发病机制和进展。NE通过几种机制在ALS中发挥作用,包括核孔隙缺陷,核质运输受损,错误定位的蛋白质的积累,核形态异常.LINC复合物是NE中第二大的多蛋白复合物,由跨越内核膜的SUN1/2蛋白和嵌入外膜的Nesprin蛋白组成。LINC复合体,通过与核层和细胞骨架相互作用,将机械力传递到调节其形态和功能稳态的细胞核。在这项研究中,我们显示了在C9ORF72基因(C9)中携带ALS致病突变的运动和皮质iPSC衍生神经元和脊髓类器官中LINC复合物的广泛改变。重要的是,我们表明,这种改变存在于一组散发性ALS和C9-ALS死后脊髓和运动皮质标本中。我们还发现LINC复合物破坏与ALS神经元中发生的核形态改变密切相关。与TDP43错误定位无关。总之,我们的数据将LINC复合物的形态和功能改变确定为ALS致病级联中的重要事件,使这一途径成为生物标志物和治疗开发的可能靶标。
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that primarily affects motor neurons, leading to progressive muscle weakness and loss of voluntary muscle control. While the exact cause of ALS is not fully understood, emerging research suggests that dysfunction of the nuclear envelope (NE) may contribute to disease pathogenesis and progression. The NE plays a role in ALS through several mechanisms, including nuclear pore defects, nucleocytoplasmic transport impairment, accumulation of mislocalized proteins, and nuclear morphology abnormalities. The LINC complex is the second biggest multi-protein complex in the NE and consists of the SUN1/2 proteins spanning the inner nuclear membrane and Nesprin proteins embedded in the outer membrane. The LINC complex, by interacting with both the nuclear lamina and the cytoskeleton, transmits mechanical forces to the nucleus regulating its morphology and functional homeostasis. In this study we show extensive alterations to the LINC complex in motor and cortical iPSC-derived neurons and spinal cord organoids carrying the ALS causative mutation in the C9ORF72 gene (C9). Importantly, we show that such alterations are present in vivo in a cohort of sporadic ALS and C9-ALS postmortem spinal cord and motor cortex specimens. We also found that LINC complex disruption strongly correlated with nuclear morphological alterations occurring in ALS neurons, independently of TDP43 mislocalization. Altogether, our data establish morphological and functional alterations to the LINC complex as important events in ALS pathogenic cascade, making this pathway a possible target for both biomarker and therapy development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这篇综述全面探索了核骨架和细胞骨架(LINC)复合物的接头所起的关键作用,特别关注奈斯普林蛋白,在细胞力学和肌肉疾病的发病机理中。区别于以前的作品,分析深入研究了LINC复合体的复杂相互作用,强调其对维持细胞结构完整性不可或缺的贡献,特别是在机械敏感的组织,如心脏和横纹肌。此外,强调了Nesprin蛋白突变与扩张型心肌病(DCM)和Emery-Dreifuss肌营养不良(EDMD)的发病之间的显着关联,强调它们在疾病发病机制中的关键作用。通过对DCM和EDMD病例的全面检查,这篇评论阐明了LINC复合体的中断,核形态学改变,和肌肉发育障碍,因此强调了完整的LINC复合物在保持肌肉生理功能方面的基本功能。此外,这篇综述为Nesprin突变对肌肉疾病发病机制中细胞动力学的影响提供了新的见解,特别是在保持心脏结构和功能的完整性。此外,先进的治疗策略,包括纠正Nesprin基因突变,控制Nesprin蛋白表达,增强LINC复杂功能,并提出了增强心肌细胞功能的方法。通过阐明核-细胞骨架相互作用的复杂分子机制,这篇综述为未来旨在解决遗传性肌肉疾病的研究和治疗干预奠定了基础.
    This review presents a comprehensive exploration of the pivotal role played by the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, with a particular focus on Nesprin proteins, in cellular mechanics and the pathogenesis of muscular diseases. Distinguishing itself from prior works, the analysis delves deeply into the intricate interplay of the LINC complex, emphasizing its indispensable contribution to maintaining cellular structural integrity, especially in mechanically sensitive tissues such as cardiac and striated muscles. Additionally, the significant association between mutations in Nesprin proteins and the onset of Dilated Cardiomyopathy (DCM) and Emery-Dreifuss Muscular Dystrophy (EDMD) is highlighted, underscoring their pivotal role in disease pathogenesis. Through a comprehensive examination of DCM and EDMD cases, the review elucidates the disruptions in the LINC complex, nuclear morphology alterations, and muscular developmental disorders, thus emphasizing the essential function of an intact LINC complex in preserving muscle physiological functions. Moreover, the review provides novel insights into the implications of Nesprin mutations for cellular dynamics in the pathogenesis of muscular diseases, particularly in maintaining cardiac structural and functional integrity. Furthermore, advanced therapeutic strategies, including rectifying Nesprin gene mutations, controlling Nesprin protein expression, enhancing LINC complex functionality, and augmenting cardiac muscle cell function are proposed. By shedding light on the intricate molecular mechanisms underlying nuclear-cytoskeletal interactions, the review lays the groundwork for future research and therapeutic interventions aimed at addressing genetic muscle disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞行为不断受到机械力的影响。这些力跨越细胞骨架并到达细胞核,它们触发调节下游生化事件的机械转导途径。因此,细胞核已经成为细胞对机械刺激反应的调节剂。细胞周期进程受细胞周期蛋白-CDK复合物调节。最近的研究表明,这些生化途径受到机械信号的影响,强调细胞力学和细胞周期调控的相互依存。特别是,从G2到有丝分裂(G2-M)的过渡显示了核结构和组织的显着变化,从核孔复合物(NPC)和核层分解到染色体缩合。这些机械活性核成分的重塑表明有丝分裂进入对力特别敏感。这里,我们解决了机械力如何与原子核串扰,以确定G2-M过渡的时间和效率。最后,我们讨论了核力学的失调对有丝分裂的影响。
    Cellular behavior is continuously influenced by mechanical forces. These forces span the cytoskeleton and reach the nucleus, where they trigger mechanotransduction pathways that regulate downstream biochemical events. Therefore, the nucleus has emerged as a regulator of cellular response to mechanical stimuli. Cell cycle progression is regulated by cyclin-CDK complexes. Recent studies demonstrated these biochemical pathways are influenced by mechanical signals, highlighting the interdependence of cellular mechanics and cell cycle regulation. In particular, the transition from G2 to mitosis (G2-M) shows significant changes in nuclear structure and organization, ranging from nuclear pore complex (NPC) and nuclear lamina disassembly to chromosome condensation. The remodeling of these mechanically active nuclear components indicates that mitotic entry is particularly sensitive to forces. Here, we address how mechanical forces crosstalk with the nucleus to determine the timing and efficiency of the G2-M transition. Finally, we discuss how the deregulation of nuclear mechanics has consequences for mitosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:端粒是位于染色体末端的独特结构。保留端粒的结构和功能对于维持哺乳动物雄性减数分裂期间的基因组稳定性和促进遗传多样性至关重要。
    方法:这篇综述汇编了有关小鼠和人类雄性减数分裂过程中端粒功能和调节的最新文献,并强调了端粒在生殖生物学和医学中的关键作用。
    各种结构,由LINC复合物(SUN-KASH)组成,SPDYA-CDK2,TTM三聚体(TERB1-TERB2-MAJIN),还有Shelterin,对控制端粒活动至关重要,如核信封附件和花束形成。除了端粒相关蛋白,还强调了负责调节端粒功能的相干蛋白和基因,尽管确切的机制尚不清楚。具有减数分裂缺陷的基因突变小鼠模型直接揭示了端粒在雄性减数分裂中的重要作用。最近报道的与端粒活性相关的突变基因在临床实践中也得到了详细说明。
    结论:端粒活性的适当调节对于小鼠和人类的雄性减数分裂进程至关重要。
    BACKGROUND: Telomeres are unique structures situated at the ends of chromosomes. Preserving the structure and function of telomeres is essential for maintaining genomic stability and promoting genetic diversity during male meiosis in mammals.
    METHODS: This review compiled recent literature on the function and regulation of telomeres during male meiosis in both mice and humans, and also highlighted the critical roles of telomeres in reproductive biology and medicine.
    UNASSIGNED: Various structures, consisting of the LINC complex (SUN-KASH), SPDYA-CDK2, TTM trimer (TERB1-TERB2-MAJIN), and shelterin, are critical in controlling telomeric activities, such as nuclear envelope attachment and bouquet formation. Other than telomere-related proteins, cohesins and genes responsible for regulating telomere function are also highlighted, though the exact mechanism remains unclear. The gene-mutant mouse models with meiotic defects directly reveal the essential roles of telomeres in male meiosis. Recently reported mutant genes associated with telomere activity in clinical practice have also been illustrated in detail.
    CONCLUSIONS: Proper regulation of telomere activities is essential for male meiosis progression in mice and humans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在受到机械刺激的肌肉细胞中,LINC复合物和细胞骨架蛋白是保持细胞结构和维持细胞核取向和定位的基础。在这种情况下,层粘连蛋白A/C的作用仍然难以捉摸。这项研究表明,在经历机械拉伸的人类成肌细胞中,laminA/C将desmin和plectin招募到核外围,允许原子核的适当空间方向。有趣的是,在暴露于机械拉伸的Emery-Dreifuss肌营养不良症(EDMD2)成肌细胞中,结蛋白和凝集素向细胞核的募集和核取向受损,这表明功能性层板A/C对于机械应变的响应至关重要。在描述以laminA/C为首的新作用机制时,这些发现表明,在肌层蛋白病中观察到的肌肉缺陷的发生可能涉及结构改变。
    In muscle cells subjected to mechanical stimulation, LINC complex and cytoskeletal proteins are basic to preserve cellular architecture and maintain nuclei orientation and positioning. In this context, the role of lamin A/C remains mostly elusive. This study demonstrates that in human myoblasts subjected to mechanical stretching, lamin A/C recruits desmin and plectin to the nuclear periphery, allowing a proper spatial orientation of the nuclei. Interestingly, in Emery-Dreifuss Muscular Dystrophy (EDMD2) myoblasts exposed to mechanical stretching, the recruitment of desmin and plectin to the nucleus and nuclear orientation were impaired, suggesting that a functional lamin A/C is crucial for the response to mechanical strain. While describing a new mechanism of action headed by lamin A/C, these findings show a structural alteration that could be involved in the onset of the muscle defects observed in muscular laminopathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号