LGN

LGN
  • 文章类型: Journal Article
    背外侧膝状核(dLGN)中的抑制性中间神经元位于成像视觉通路的第一个中央突触,但对它们的功能知之甚少。鉴于他们的解剖结构,它们被认为是多路复用器,沿着它们的树突整合许多不同的视网膜通道。这里,使用有针对性的单细胞启动狂犬病追踪,我们发现小鼠dLGN中间神经元表现出与丘脑皮质神经元相似的视网膜输入特化程度.有些在解剖学上高度专业化,例如,朝向运动选择信息。在体内进行的双光子钙成像显示中间神经元在功能上也是特化的。在缺乏视网膜水平方向选择性的小鼠中,中间神经元的水平方向选择性降低,表明输入和功能专业化之间存在因果关系。功能专业化不仅存在于中间神经元的躯体中,而且还延伸到它们的树突中。总之,抑制性中间神经元全局显示出不同的视觉特征,这些视觉特征反映了它们的视网膜输入专业化,非常适合执行特征选择性抑制。
    Inhibitory interneurons in the dorsolateral geniculate nucleus (dLGN) are situated at the first central synapse of the image-forming visual pathway, but little is known about their function. Given their anatomy, they are expected to be multiplexors, integrating many different retinal channels along their dendrites. Here, using targeted single-cell-initiated rabies tracing, we found that mouse dLGN interneurons exhibit a degree of retinal input specialization similar to thalamocortical neurons. Some are anatomically highly specialized, for example, toward motion-selective information. Two-photon calcium imaging performed in vivo revealed that interneurons are also functionally specialized. In mice lacking retinal horizontal direction selectivity, horizontal direction selectivity is reduced in interneurons, suggesting a causal link between input and functional specialization. Functional specialization is not only present at interneuron somata but also extends into their dendrites. Altogether, inhibitory interneurons globally display distinct visual features which reflect their retinal input specialization and are ideally suited to perform feature-selective inhibition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    闭上眼睛在很大程度上会关闭我们的视力。那就是说,我们的眼睑仍然通过一些光,允许我们的视觉系统粗略地处理有关视觉场景的信息,例如亮度的变化。然而,闭眼对早期视觉系统内处理的具体影响仍在很大程度上未知.要了解闭眼时如何调节视觉处理,我们使用功能磁共振成像(fMRI)来测量对高(100%)和低(10%)时间对比度的闪烁视觉刺激的反应,当参与者睁开或闭上眼睛观看刺激时。有趣的是,我们发现闭眼在视觉丘脑和视觉皮层中产生了质量上不同的影响模式。我们发现睁开眼睛,低时间对比度刺激产生较小的反应,穿过外侧膝状核(LGN),初级(V1)和纵横交错的视觉皮层(V2)。然而,闭着眼睛,我们发现LGN和V1保持类似的BOLD反应作为睁眼状态,尽管通过眼睑的视觉输入受到抑制。相比之下,闭眼时,V2和V3的BOLD反应强烈减弱,不管时间的对比。我们的发现揭示了当眼睛闭上时视觉处理的定性不同模式——不仅仅是整体衰减,而是反映了视觉丘脑皮层网络的不同反应,其中处理的最早阶段保留了有关刺激的信息,但随后在视觉皮层中被关闭。
    Closing our eyes largely shuts down our ability to see. That said, our eyelids still pass some light, allowing our visual system to coarsely process information about visual scenes, such as changes in luminance. However, the specific impact of eye closure on processing within the early visual system remains largely unknown. To understand how visual processing is modulated when eyes are shut, we used functional magnetic resonance imaging (fMRI) to measure responses to a flickering visual stimulus at high (100%) and low (10%) temporal contrasts, while participants viewed the stimuli with their eyes open or closed. Interestingly, we discovered that eye closure produced a qualitatively distinct pattern of effects across the visual thalamus and visual cortex. We found that with eyes open, low temporal contrast stimuli produced smaller responses across the lateral geniculate nucleus (LGN), primary (V1) and extrastriate visual cortex (V2). However, with eyes closed, we discovered that the LGN and V1 maintained similar blood oxygenation level-dependent (BOLD) responses as the eyes open condition, despite the suppressed visual input through the eyelid. In contrast, V2 and V3 had strongly attenuated BOLD response when eyes were closed, regardless of temporal contrast. Our findings reveal a qualitatively distinct pattern of visual processing when the eyes are closed-one that is not simply an overall attenuation but rather reflects distinct responses across visual thalamocortical networks, wherein the earliest stages of processing preserve information about stimuli but are then gated off downstream in visual cortex.NEW & NOTEWORTHY When we close our eyes coarse luminance information is still accessible by the visual system. Using functional magnetic resonance imaging, we examined whether eyelid closure plays a unique role in visual processing. We discovered that while the LGN and V1 show equivalent responses when the eyes are open or closed, extrastriate cortex exhibited attenuated responses with eye closure. This suggests that when the eyes are closed, downstream visual processing is blind to this information.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    来自两只眼睛的ON和OFF丘脑传入在初级视觉皮层中会聚,形成双眼感受野。接受野需要多样化才能对我们的视觉世界进行采样,但也需要在眼睛之间相似才能实现双眼融合。目前尚不清楚皮层如何在接受场多样性和相似性之间平衡这些竞争需求。我们的结果表明,猫视觉皮层中的感受野是双眼匹配的,具有精确的视网膜变性精度,方向/方向偏好,取向/方向选择性,响应延迟,和开-关极性/结构。具体来说,视网膜和ON-OFF结构中的平均双眼错配被严格限制在平均感受野大小的1/20和1/5,但仍然足够大以产生所有类型的双眼视差调谐。基于这些结果,我们得出的结论是,皮层感受野与促进双眼融合所需的高精度匹配,同时允许有限的失配处理视觉深度。
    ON and OFF thalamic afferents from the two eyes converge in the primary visual cortex to form binocular receptive fields. The receptive fields need to be diverse to sample our visual world but also similar across eyes to achieve binocular fusion. It is currently unknown how the cortex balances these competing needs between receptive-field diversity and similarity. Our results demonstrate that receptive fields in the cat visual cortex are binocularly matched with exquisite precision for retinotopy, orientation/direction preference, orientation/direction selectivity, response latency, and ON-OFF polarity/structure. Specifically, the average binocular mismatches in retinotopy and ON-OFF structure are tightly restricted to 1/20 and 1/5 of the average receptive-field size but are still large enough to generate all types of binocular disparity tuning. Based on these results, we conclude that cortical receptive fields are binocularly matched with the high precision needed to facilitate binocular fusion while allowing restricted mismatches to process visual depth.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞粘附蛋白E-cadherin的丢失是弥漫型胃癌(DGC)发展的基础,其特征是源自胃上皮的肿瘤细胞在周围基质中逐渐积累。E-钙粘蛋白缺乏如何驱动DGC形成仍然难以捉摸。因此,我们利用人类胃类器官模型和早期DGC病变的组织学分析研究了E-cadherin丢失对胃上皮组织的影响。胃类器官中的E-钙粘蛋白消耗概括了DGC的启动,单层结构的逐渐丧失和单个细胞的分离。我们发现,胃上皮中的E-钙粘蛋白缺乏不会导致上皮内聚力的普遍丧失,但会破坏纺锤体定向机制。这导致平面细胞分裂方向的损失,因此,子细胞位于胃上皮层之外。尽管基本分层的细胞无法分离并重新整合到上皮中,顶部错位的子细胞可以触发单层上皮结构的逐渐丧失。这种受损的结构阻碍了错位的子细胞的重新整合,并使基础分层的细胞能够散布到周围的基质中。一起来看,我们的研究结果描述了E-cadherin缺乏如何通过分裂细胞的移位破坏胃上皮结构,并为DGC的发病提供了新的见解。©2024作者由JohnWiley&SonsLtd代表英国和爱尔兰病理学会出版的病理学杂志。
    Loss of the cell-cell adhesion protein E-cadherin underlies the development of diffuse-type gastric cancer (DGC), which is characterized by the gradual accumulation of tumor cells originating from the gastric epithelium in the surrounding stroma. How E-cadherin deficiency drives DGC formation remains elusive. Therefore, we investigated the consequences of E-cadherin loss on gastric epithelial organization utilizing a human gastric organoid model and histological analyses of early-stage DGC lesions. E-cadherin depletion from gastric organoids recapitulates DGC initiation, with progressive loss of a single-layered architecture and detachment of individual cells. We found that E-cadherin deficiency in gastric epithelia does not lead to a general loss of epithelial cohesion but disrupts the spindle orientation machinery. This leads to a loss of planar cell division orientation and, consequently, daughter cells are positioned outside of the gastric epithelial layer. Although basally delaminated cells fail to detach and instead reintegrate into the epithelium, apically mispositioned daughter cells can trigger the gradual loss of the single-layered epithelial architecture. This impaired architecture hampers reintegration of mispositioned daughter cells and enables basally delaminated cells to disseminate into the surrounding matrix. Taken together, our findings describe how E-cadherin deficiency disrupts gastric epithelial architecture through displacement of dividing cells and provide new insights in the onset of DGC. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    一阶丘脑核接收来自外周受体的前馈信号,并将这些信号传递到初级感觉皮层。初级感觉皮层,反过来,为一阶丘脑提供相互反馈。因为绝大多数感觉丘脑皮层的输入目标是初级感觉皮层,假设它们的互补皮质丘脑神经元同样限于初级感觉皮层。我们通过表征灵长类动物(猕猴)大脑的多个中层视觉皮层区域中的形态多样性神经元来颠覆这一假设,这些神经元向初级视觉丘脑提供直接反馈,背侧外侧膝状核(LGN)。虽然大多数的生殖器皮质神经元投射到初级视觉皮层(V1),少数,主要位于KoniocellityLGN层中,提供直接输入到视觉皮层。这些“绕过V1”的投影可能与盲人视线有关。我们假设直接针对皮质外皮质的生殖器皮质输入应该由相互的皮质皮质回路补充。使用病毒介导的电路跟踪,我们在三个中间区域发现了皮质神经元:MT,MST,V4。定量形态学分析显示,不同区域的独特细胞类型分布不均匀。许多皮质外神经元具有刺状星状形态,提示可能靶向konitellocellularLGN层。但重要的是,在不同地区观察到多种形态类型。这种形态多样性可能表明,在视觉处理层次结构的多个阶段,并行的V1绕过皮质原反馈流。此外,整个视觉皮层中皮质神经元的存在需要重新评估LGN作为视觉信息的枢纽,而不是简单的中继。
    First-order thalamic nuclei receive feedforward signals from peripheral receptors and relay these signals to primary sensory cortex. Primary sensory cortex, in turn, provides reciprocal feedback to first-order thalamus. Because the vast majority of sensory thalamocortical inputs target primary sensory cortex, their complementary corticothalamic neurons are assumed to be similarly restricted to primary sensory cortex. We upend this assumption by characterizing morphologically diverse neurons in multiple mid-level visual cortical areas of the primate (Macaca mulatta) brain that provide direct feedback to the primary visual thalamus, the dorsal lateral geniculate nucleus (LGN). Although the majority of geniculocortical neurons project to primary visual cortex (V1), a minority, located mainly in the koniocellular LGN layers, provide direct input to extrastriate visual cortex. These \"V1-bypassing\" projections may be implicated in blindsight. We hypothesized that geniculocortical inputs directly targeting extrastriate cortex should be complemented by reciprocal corticogeniculate circuits. Using virus-mediated circuit tracing, we discovered corticogeniculate neurons throughout three mid-level extrastriate areas: MT, MST, and V4. Quantitative morphological analyses revealed nonuniform distributions of unique cell types across areas. Many extrastriate corticogeniculate neurons had spiny stellate morphology, suggesting possible targeting of koniocellular LGN layers. Importantly though, multiple morphological types were observed across areas. Such morphological diversity could suggest parallel streams of V1-bypassing corticogeniculate feedback at multiple stages of the visual processing hierarchy. Furthermore, the presence of corticogeniculate neurons across visual cortex necessitates a reevaluation of the LGN as a hub for visual information rather than a simple relay.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:探讨视觉诱发电位(VEP)的主要成分(P100)与多发性硬化症(MS)的前和后损伤的关系。
    方法:31例患者(EDSS中位数:2.5),13患有先前的视神经炎(ON),31名健康对照者有VEP,光学相干层析成像和磁共振成像。我们测试了P100潜伏期与乳头周围视网膜神经纤维层(pRNFL)的关联,神经节细胞/内丛状层(GCIPL),外侧膝状核体积(LGN),视神经辐射(OR-WML)的白质病变,非损伤光学辐射的各向异性分数(NAOR-FA),和初级视觉皮层的平均厚度(V1)。效应大小以边际R2(mR2)给出。
    结果:P100延迟,pRNFL,患者的GCIPL和LGN与对照组不同。在患者中,P100潜伏期与GCIPL显著相关(mR2=0.26),与OR-WML(mR2=0.17)的强度较低,NAOR-FA(mR2=0.13)和pRNFL(mR2=0.08)。在多变量分析中,GCIPL和NAOR-FA仍然与P100潜伏期显著相关(mR2=0.41)。在ON患者中,P100潜伏期与LGN体积显著相关(mR2=-0.56)。
    结论:P100-潜伏期受前后视觉通路损伤的影响。在ON患者中,突触级(LGN)的损伤可能另外导致延迟。
    结论:我们的发现证实了对VEP信号的后交叉贡献,这可能与MS不同的病理生理机制有关。
    OBJECTIVE: To explore associations of the main component (P100) of visual evoked potentials (VEP) to pre- and postchiasmatic damage in multiple sclerosis (MS).
    METHODS: 31 patients (median EDSS: 2.5), 13 with previous optic neuritis (ON), and 31 healthy controls had VEP, optical coherence tomography and magnetic resonance imaging. We tested associations of P100-latency to the peripapillary retinal nerve fiber layer (pRNFL), ganglion cell/inner plexiform layers (GCIPL), lateral geniculate nucleus volume (LGN), white matter lesions of the optic radiations (OR-WML), fractional anisotropy of non-lesional optic radiations (NAOR-FA), and to the mean thickness of primary visual cortex (V1). Effect sizes are given as marginal R2 (mR2).
    RESULTS: P100-latency, pRNFL, GCIPL and LGN in patients differed from controls. Within patients, P100-latency was significantly associated with GCIPL (mR2 = 0.26), and less strongly with OR-WML (mR2 = 0.17), NAOR-FA (mR2 = 0.13) and pRNFL (mR2 = 0.08). In multivariate analysis, GCIPL and NAOR-FA remained significantly associated with P100-latency (mR2 = 0.41). In ON-patients, P100-latency was significantly associated with LGN volume (mR2 = -0.56).
    CONCLUSIONS: P100-latency is affected by anterior and posterior visual pathway damage. In ON-patients, damage at the synapse-level (LGN) may additionally contribute to latency delay.
    CONCLUSIONS: Our findings corroborate post-chiasmatic contributions to the VEP-signal, which may relate to distinct pathophysiological mechanisms in MS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    MECP2中的突变会导致Rett综合征(RTT),一种X连锁神经发育障碍,可导致女性广泛的认知障碍。虽然RTT症状的确切病因尚不清楚,其临床表现的一个可能的解释是,MECP2的丢失会导致神经回路的错误连接,这是由于大脑对神经元活动和感觉体验变化的反应能力的缺陷。这里,我们显示,MeCP2在小鼠大脑中的四个残基(S86,S274,T308和S421)被磷酸化,以响应神经元活动,我们产生了四重敲入(QKI)小鼠系,其中所有四个活性依赖性位点都突变为丙氨酸以防止磷酸化。QKI小鼠在两个脑区不显示明显的RTT表型或可检测的基因表达变化。然而,来自QKI小鼠的视网膜原突触的电生理记录显示,虽然突触消除最初在P14时是正常的,但在P20时却受到了显着损害。值得注意的是,这种表型不同于先前报道的Mecp2空小鼠的突触细化缺陷,突触最初会细化,但在产后第三周后会消退。因此,我们提出了一种模型,在该模型中,MeCP2的活性诱导磷酸化对于视网膜原突触突触成熟的适当时机至关重要,特别是在出生后早期。
    Mutations in MECP2 give rise to Rett syndrome (RTT), an X-linked neurodevelopmental disorder that results in broad cognitive impairments in females. While the exact etiology of RTT symptoms remains unknown, one possible explanation for its clinical presentation is that loss of MECP2 causes miswiring of neural circuits due to defects in the brain\'s capacity to respond to changes in neuronal activity and sensory experience. Here, we show that MeCP2 is phosphorylated at four residues in the mouse brain (S86, S274, T308, and S421) in response to neuronal activity, and we generate a quadruple knock-in (QKI) mouse line in which all four activity-dependent sites are mutated to alanines to prevent phosphorylation. QKI mice do not display overt RTT phenotypes or detectable gene expression changes in two brain regions. However, electrophysiological recordings from the retinogeniculate synapse of QKI mice reveal that while synapse elimination is initially normal at P14, it is significantly compromised at P20. Notably, this phenotype is distinct from the synapse refinement defect previously reported for Mecp2 null mice, where synapses initially refine but then regress after the third postnatal week. We thus propose a model in which activity-induced phosphorylation of MeCP2 is critical for the proper timing of retinogeniculate synapse maturation specifically during the early postnatal period.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    闭上眼睛在很大程度上会关闭我们的视力。那就是说,我们的眼睑仍然通过一些光,允许我们的视觉系统粗略地处理有关视觉场景的信息,例如亮度的变化。然而,闭眼对早期视觉系统内处理的具体影响仍在很大程度上未知.要了解闭眼时如何调节视觉处理,我们使用功能磁共振成像(fMRI)来测量对高(100%)和低(10%)时间对比度的闪烁视觉刺激的反应,当参与者睁开或闭上眼睛观看刺激时。有趣的是,我们发现闭眼在视觉丘脑和视觉皮层中产生了质量上不同的影响模式。我们发现睁开眼睛,低时间对比度刺激产生较小的反应,穿过外侧膝状核(LGN),初级(V1)和纵横交错的视觉皮层(V2)。然而,闭着眼睛,我们发现LGN和V1保持类似的BOLD反应作为睁眼状态,尽管通过眼睑的视觉输入受到抑制。相比之下,闭眼时,V2和V3的BOLD反应强烈减弱,不管时间的对比。我们的发现揭示了闭眼时视觉处理的定性独特模式-不仅仅是整体衰减,而是反映了视觉丘脑皮层网络的不同反应,其中处理的最早阶段保留了有关刺激的信息,但随后在视觉皮层中被关闭。
    当我们闭上眼睛时,不是所有的信息都被封锁了。粗略的亮度信息仍然可以被视觉系统处理,即使我们的眼睛是闭着的。使用功能磁共振成像(fMRI),我们检查了眼睑闭合是否在视觉处理中起着独特的作用。我们发现,虽然丘脑和初级视觉皮层(V1)在睁眼和闭眼时都显示出等效的亮度依赖性反应,皮层外皮层表现出明显的反应模式。具体来说,闭眼减弱了在交叉皮质中的亮度响应,但响应保留在LGN和V1中。这种模式表明,在眼睛闭上的大脑状态下,视觉信息仍然可以进入视觉处理的最早阶段,但是下游的视觉处理区域似乎对这些信息视而不见。
    Closing our eyes largely shuts down our ability to see. That said, our eyelids still pass some light, allowing our visual system to coarsely process information about visual scenes, such as changes in luminance. However, the specific impact of eye closure on processing within the early visual system remains largely unknown. To understand how visual processing is modulated when eyes are shut, we used functional magnetic resonance imaging (fMRI) to measure responses to a flickering visual stimulus at high (100%) and low (10%) temporal contrasts, while participants viewed the stimuli with their eyes open or closed. Interestingly, we discovered that eye closure produced a qualitatively distinct pattern of effects across the visual thalamus and visual cortex. We found that with eyes open, low temporal contrast stimuli produced smaller responses, across the lateral geniculate nucleus (LGN), primary (V1) and extrastriate visual cortex (V2). However, with eyes closed, we discovered that the LGN and V1 maintained similar BOLD responses as the eyes open condition, despite the suppressed visual input through the eyelid. In contrast, V2 and V3 had strongly attenuated BOLD response when eyes were closed, regardless of temporal contrast. Our findings reveal a qualitative distinct pattern of visual processing when the eyes are closed - one that is not simply an overall attenuation, but rather reflects distinct responses across visual thalamocortical networks, wherein the earliest stages of processing preserves information about stimuli but is then gated off downstream in visual cortex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    意识视觉运动信息遵循从视网膜到外侧膝状核(LGN)再到初级视觉皮层(V1)的皮层途径,然后到达颞中视觉区域(MT/V5)。绕过V1的替代皮层下途径被认为传达了无意识的视觉信息。一个从视网膜流向髓膜(PUL),再流向内侧颞部视觉区域(MT);而另一个则直接将LGN连接到MT。这些途径的证据来自非人灵长类动物和患有脑损伤的人类的适度规模的研究。因此,本研究的目的是在大量的神经典型个体中重建这些通路,并确定这些通路的髓鞘形成程度,这表明信息流是快速的。我们使用来自HumanConnectome项目的公开可用的7T(N=98;\'发现\')和3T(\'验证\')扩散磁共振成像数据集来重建PUL-MT(包括PUL的所有子隔室)和LGN-MT通路。我们在左半球发现了更多的纤维束,密度更大。尽管左PUL-MT路径更密集,双侧LGN-MT束髓鞘更严重,表明更快的信号转导。我们认为,这种明显的差异可能是由于更频繁地使用LGN-MT途径引起的“适应性髓鞘形成”,从而导致更大的髓鞘形成和更快的整体信号传递。
    Conscious visual motion information follows a cortical pathway from the retina to the lateral geniculate nucleus (LGN) and on to the primary visual cortex (V1) before arriving at the middle temporal visual area (MT/V5). Alternative subcortical pathways that bypass V1 are thought to convey unconscious visual information. One flows from the retina to the pulvinar (PUL) and on to medial temporal visual area (MT); while the other directly connects the LGN to MT. Evidence for these pathways comes from non-human primates and modest-sized studies in humans with brain lesions. Thus, the aim of the current study was to reconstruct these pathways in a large sample of neurotypical individuals and to determine the degree to which these pathways are myelinated, suggesting information flow is rapid. We used the publicly available 7T (N = 98; \'discovery\') and 3T (N = 381; \'validation\') diffusion magnetic resonance imaging datasets from the Human Connectome Project to reconstruct the PUL-MT (including all subcompartments of the PUL) and LGN-MT pathways. We found more fibre tracts with greater density in the left hemisphere. Although the left PUL-MT path was denser, the bilateral LGN-MT tracts were more heavily myelinated, suggesting faster signal transduction. We suggest that this apparent discrepancy may be due to \'adaptive myelination\' caused by more frequent use of the LGN-MT pathway that leads to greater myelination and faster overall signal transmission.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    黑白信息在自然场景中不对称分布,引起不对称的神经元反应,并导致不对称的感知。认识到视觉信息处理中黑白不对称的普遍性和必要性,黑白不对称的神经底物仍不清楚。为了解开前馈和复发机制在皮质黑白不对称性产生中的作用,我们记录了两种性别的麻醉猫的V1层状反应和LGN反应。在皮质列中,我们发现,黑白不对称性从输入层开始,在输出层中变得更加明显。我们还发现了输出层和输入层之间黑白不对称性的明显动态。具体来说,在刺激开始后,黑色反应在所有层中占主导地位。刺激抵消后,黑白响应在输入层中平衡,但是黑色响应仍然在输出层中占主导地位。与输入层相比,输出层中的回弹响应被显著抑制。白色刺激引起的相对抑制强度明显更强,并且取决于ON-OFF皮层图内的位置。具有延迟和极性选择性皮层抑制的模型解释了输出层中的黑白不对称性,在其中,通过格兰杰因果关系分析确定了突出的循环联系。除了响应强度的黑白不对称性外,空间感受野的层间差异动态变化。我们的发现表明,前馈和复发机制是动态招募的,用于在V1中产生黑白不对称性。重要性声明黑白不对称在视觉信息处理中是普遍和必不可少的,然而皮质黑白不对称的神经底物仍然未知.利用V1层流记录,我们在猫V1中提供了第一个黑白不对称的层状模式,并发现了输出层和输入层之间黑白不对称的明显动态。比较三个视觉层次结构中的黑白不对称性,LGN,V1输入层,和V1输出层,我们证明了前馈和复发机制是动态募集的,用于皮质黑白不对称性的产生.我们的发现不仅增强了我们对皮质柱内层流处理的理解,而且阐明了前馈连接和循环连接如何相互作用以塑造神经元反应特性。
    Black and white information is asymmetrically distributed in natural scenes, evokes asymmetric neuronal responses, and causes asymmetric perceptions. Recognizing the universality and essentiality of black-white asymmetry in visual information processing, the neural substrates for black-white asymmetry remain unclear. To disentangle the role of the feedforward and recurrent mechanisms in the generation of cortical black-white asymmetry, we recorded the V1 laminar responses and LGN responses of anesthetized cats of both sexes. In a cortical column, we found that black-white asymmetry starts at the input layer and becomes more pronounced in the output layer. We also found distinct dynamics of black-white asymmetry between the output layer and the input layer. Specifically, black responses dominate in all layers after stimulus onset. After stimulus offset, black and white responses are balanced in the input layer, but black responses still dominate in the output layer. Compared with that in the input layer, the rebound response in the output layer is significantly suppressed. The relative suppression strength evoked by white stimuli is notably stronger and depends on the location within the ON-OFF cortical map. A model with delayed and polarity-selective cortical suppression explains black-white asymmetry in the output layer, within which prominent recurrent connections are identified by Granger causality analysis. In addition to black-white asymmetry in response strength, the interlaminar differences in spatial receptive field varied dynamically. Our findings suggest that the feedforward and recurrent mechanisms are dynamically recruited for the generation of black-white asymmetry in V1.SIGNIFICANCE STATEMENT Black-white asymmetry is universal and essential in visual information processing, yet the neural substrates for cortical black-white asymmetry remain unknown. Leveraging V1 laminar recordings, we provided the first laminar pattern of black-white asymmetry in cat V1 and found distinct dynamics of black-white asymmetry between the output layer and the input layer. Comparing black-white asymmetry across three visual hierarchies, the LGN, V1 input layer, and V1 output layer, we demonstrated that the feedforward and recurrent mechanisms are dynamically recruited for the generation of cortical black-white asymmetry. Our findings not only enhance our understanding of laminar processing within a cortical column but also elucidate how feedforward connections and recurrent connections interact to shape neuronal response properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号