Ketoglutaric Acids

酮戊二酸
  • 文章类型: Journal Article
    α-酮戊二酸(α-KG)三羧酸循环的内源性中间产物,参与多种细胞代谢途径。它作为能量捐赠者,氨基酸生物合成的前体,和表观遗传调节剂。α-KG在免疫调节中发挥生理功能,氧化应激,和抗衰老。近年来,据报道,体内α-KG水平与代谢综合征密切相关,包括肥胖,高血糖症,和其他病理因素。外源性补充α-KG可改善肥胖,血糖水平,与代谢综合征相关的心血管疾病风险。此外,α-KG调节代谢综合征的共同病理机制,提示α-KG在代谢综合征中的潜在应用前景。为进一步探索α-KG在代谢综合征中的应用提供理论依据,本文就α-KG与代谢综合征的关系进行综述,并对α-KG在改善代谢综合征病理状态和疾病进展方面的作用的最新研究进展进行综述。下一步,研究人员可能将重点放在代谢综合征的共同发病机制上,并研究α-KG是否可以在代谢综合征的治疗中实现“异质病同向疗法”的治疗目标。
    Alpha-ketoglutarate (α-KG), an endogenous intermediate of the tricarboxylic acid cycle, is involved in a variety of cellular metabolic pathways. It serves as an energy donor, a precursor of amino acid biosynthesis, and an epigenetic regulator. α-KG plays physiological functions in immune regulation, oxidative stress, and anti-aging as well. In recent years, it has been reported that the level of α-KG in the body is closely associated with metabolic syndrome, including obesity, hyperglycemia, and other pathological factors. Exogenous supplementation of α-KG improves obesity, blood glucose levels, and cardiovascular disease risks associated with metabolic syndrome. Furthermore, α-KG regulates the common pathological mechanisms of metabolic syndrome, suggesting the potential application prospect of α-KG in metabolic syndrome. In order to provide a theoretical basis for further exploration of the application of α-KG in metabolic syndrome, we focused on α-KG and metabolic syndrome in this article and summarized the latest research progress in the role of α-KG in improving the pathological condition and disease progression of metabolic syndrome. For the next step, researchers may focus on the co-pathogenesis of metabolic syndrome and investigate whether α-KG can be used to achieve the therapeutic goal of \"homotherapy for heteropathy\" in the treatment of metabolic syndrome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    中心代谢的酶倾向于组装成瞬时的超分子复合物。然而,相互作用的功能意义,特别是在催化非连续反应的酶之间,尚不清楚。这里,通过共定位枯草芽孢杆菌TCA循环的两种非连续酶,苹果酸脱氢酶(MDH)和异柠檬酸脱氢酶(ICD),在相分离的液滴中,我们表明MDH-ICD相互作用导致酶凝聚,伴随着ICD催化速率的增强和其反应产物的明显螯合。2-氧戊二酸。理论证明MDH介导的ICD分子聚类解释了观察到的现象。体内分析表明,MDH过表达导致2-氧戊二酸的积累和流过2-氧戊二酸占据的碳氮交叉的分解代谢和合成代谢分支的通量减少,导致铵同化受阻,生物量产量减少。我们的发现表明,MDH-ICD相互作用是碳氮代谢的重要协调者。
    Enzymes of the central metabolism tend to assemble into transient supramolecular complexes. However, the functional significance of the interactions, particularly between enzymes catalyzing non-consecutive reactions, remains unclear. Here, by co-localizing two non-consecutive enzymes of the TCA cycle from Bacillus subtilis, malate dehydrogenase (MDH) and isocitrate dehydrogenase (ICD), in phase separated droplets we show that MDH-ICD interaction leads to enzyme agglomeration with a concomitant enhancement of ICD catalytic rate and an apparent sequestration of its reaction product, 2-oxoglutarate. Theory demonstrates that MDH-mediated clustering of ICD molecules explains the observed phenomena. In vivo analyses reveal that MDH overexpression leads to accumulation of 2-oxoglutarate and reduction of fluxes flowing through both the catabolic and anabolic branches of the carbon-nitrogen intersection occupied by 2-oxoglutarate, resulting in impeded ammonium assimilation and reduced biomass production. Our findings suggest that the MDH-ICD interaction is an important coordinator of carbon-nitrogen metabolism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    N-乙酰去甲胆碱合酶(LolO)是几种铁(II)和2-酮戊二酸依赖性(Fe/2OG)加氧酶之一,可在有价值的天然产物的生物合成中催化不同类型的顺序反应。在将C2键合的氧与C7偶联以形成三环洛林核之前,LolO羟基化1-外-乙酰胺并吡咯并氮啶的C2。每个反应都需要通过氧代铁(IV)(铁基)中间体裂解C-H键;但是,不同的碳是目标,和碳自由基有不同的命运。先前的研究表明,底物辅因子处置(SCD)控制H·提取的位点,并可能影响反应结果。这些迹象使我们确定SCD从第一到第二LolO反应的变化是否可能有助于观察到的反应性转换。尽管以前显示C2羟基化反应中的单个铁基络合物具有典型的穆斯堡尔参数,在氧化环化反应过程中积累的两个铁基复合物之一具有迄今为止这种复合物的最高异构体位移,并且从C7中提取H·比先前报道的C7的非途径羟基化中的第一个铁基复合物快20倍。在2H2O溶剂中,与第二铁基络合物的环化竞争中C7的可检测羟基化没有增强,表明C2羟基在C7-H裂解之前被去质子化。这些观察结果与C2氧与铁配合物的配位一致,可以重新定向其氧代配体,基板,或两个位置都更有利于C7-H裂解和氧化环化。
    N-Acetylnorloline synthase (LolO) is one of several iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenases that catalyze sequential reactions of different types in the biosynthesis of valuable natural products. LolO hydroxylates C2 of 1-exo-acetamidopyrrolizidine before coupling the C2-bonded oxygen to C7 to form the tricyclic loline core. Each reaction requires cleavage of a C-H bond by an oxoiron(IV) (ferryl) intermediate; however, different carbons are targeted, and the carbon radicals have different fates. Prior studies indicated that the substrate-cofactor disposition (SCD) controls the site of H· abstraction and can affect the reaction outcome. These indications led us to determine whether a change in SCD from the first to the second LolO reaction might contribute to the observed reactivity switch. Whereas the single ferryl complex in the C2 hydroxylation reaction was previously shown to have typical Mössbauer parameters, one of two ferryl complexes to accumulate during the oxacyclization reaction has the highest isomer shift seen to date for such a complex and abstracts H· from C7 ∼ 20 times faster than does the first ferryl complex in its previously reported off-pathway hydroxylation of C7. The detectable hydroxylation of C7 in competition with cyclization by the second ferryl complex is not enhanced in 2H2O solvent, suggesting that the C2 hydroxyl is deprotonated prior to C7-H cleavage. These observations are consistent with the coordination of the C2 oxygen to the ferryl complex, which may reorient its oxo ligand, the substrate, or both to positions more favorable for C7-H cleavage and oxacyclization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    骨关节炎(OA)是导致老年人残疾的最常见的退行性关节疾病,由膝关节的功能和结构改变引起的。为了研究是否可以利用代谢驱动因素来促进软骨修复,采用液相色谱-质谱(LC-MS)非靶向代谢组学方法筛选骨关节炎大鼠血清生物标志物.根据相关性分析,已经证明α-酮戊二酸(α-KG)在各种疾病中具有抗氧化和抗炎性质。这些特性使α-KG成为进一步研究OA的主要候选者。实验结果表明,α-KG能显著抑制H2O2诱导的软骨细胞基质降解和凋亡,降低活性氧(ROS)和丙二醛(MDA)的水平,增加超氧化物歧化酶(SOD)和谷胱甘肽(GSH)/谷胱甘肽二硫化物(GSSG)水平,并上调ETV4、SLC7A11和GPX4的表达。进一步的机理研究观察到α-KG,像Ferrostatin-1(Fer-1),能有效缓解Erastin诱导的细胞凋亡和ECM降解。α-KG和Fer-1在mRNA和蛋白质水平上调ETV4、SLC7A11和GPX4,亚铁离子(Fe2+)积累减少,ATDC5细胞线粒体膜电位(MMP)得以保留。在体内,α-KG处理通过激活ETV4/SLC7A11/GPX4通路抑制OA大鼠铁凋亡。因此,这些发现表明α-KG通过ETV4/SLC7A11/GPX4信号通路抑制铁凋亡,从而缓解OA。这些观察结果表明,α-KG具有治疗和预防OA的潜在治疗特性,从而在未来具有潜在的临床应用。
    Osteoarthritis (OA) is the most common degenerative joint disorder that causes disability in aged individuals, caused by functional and structural alterations of the knee joint. To investigate whether metabolic drivers might be harnessed to promote cartilage repair, a liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics approach was carried out to screen serum biomarkers in osteoarthritic rats. Based on the correlation analyses, α-ketoglutarate (α-KG) has been demonstrated to have antioxidant and anti-inflammatory properties in various diseases. These properties make α-KG a prime candidate for further investigation of OA. Experimental results indicate that α-KG significantly inhibited H2O2-induced cartilage cell matrix degradation and apoptosis, reduced levels of reactive oxygen species (ROS) and malondialdehyde (MDA), increased superoxide dismutase (SOD) and glutathione (GSH)/glutathione disulfide (GSSG) levels, and upregulated the expression of ETV4, SLC7A11 and GPX4. Further mechanistic studies observed that α-KG, like Ferrostatin-1 (Fer-1), effectively alleviated Erastin-induced apoptosis and ECM degradation. α-KG and Fer-1 upregulated ETV4, SLC7A11, and GPX4 at the mRNA and protein levels, decreased ferrous ion (Fe2+) accumulation, and preserved mitochondrial membrane potential (MMP) in ATDC5 cells. In vivo, α-KG treatment inhibited ferroptosis in OA rats by activating the ETV4/SLC7A11/GPX4 pathway. Thus, these findings indicate that α-KG inhibits ferroptosis via the ETV4/SLC7A11/GPX4 signaling pathway, thereby alleviating OA. These observations suggest that α-KG exhibits potential therapeutic properties for the treatment and prevention of OA, thereby having potential clinical applications in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    α-酮戊二酸(AKG),三羧酸循环中的关键中间体,已被证明可以减轻高脂血症引起的血脂异常和内皮损伤。虽然高脂血症是非酒精性脂肪性肝病的主要诱因,AKG对高脂血症诱导的肝脏代谢紊乱的保护作用仍未得到充分的发挥。本研究旨在探讨AKG对急性高脂血症引起的肝脏脂质代谢紊乱的潜在保护作用及其机制。我们的观察表明,AKG有效缓解肝脏脂质积累,线粒体功能障碍,和P407诱导的高脂血症小鼠的氧化还原稳态的丧失,以及棕榈酸损伤的HepG2细胞和原代肝细胞。机制见解表明,预防作用是通过激活AMPK-PGC-1α/Nrf2途径介导的。总之,我们的研究结果揭示了AKG在改善高脂血症诱导的脂肪肝异常脂质代谢紊乱中的作用和机制。这表明AKG,内源性线粒体营养素,在解决高脂血症诱导的脂肪肝疾病方面具有广阔的潜力。
    α-Ketoglutarate (AKG), a crucial intermediate in the tricarboxylic acid cycle, has been demonstrated to mitigate hyperlipidemia-induced dyslipidemia and endothelial damage. While hyperlipidemia stands as a major trigger for non-alcoholic fatty liver disease, the protection of AKG on hyperlipidemia-induced hepatic metabolic disorders remains underexplored. This study aims to investigate the potential protective effects and mechanisms of AKG against hepatic lipid metabolic disorders caused by acute hyperlipidemia. Our observations indicate that AKG effectively alleviates hepatic lipid accumulation, mitochondrial dysfunction, and loss of redox homeostasis in P407-induced hyperlipidemia mice, as well as in palmitate-injured HepG2 cells and primary hepatocytes. Mechanistic insights reveal that the preventive effects are mediated by activating the AMPK-PGC-1α/Nrf2 pathway. In conclusion, our findings shed light on the role and mechanism of AKG in ameliorating abnormal lipid metabolic disorders in hyperlipidemia-induced fatty liver, suggesting that AKG, an endogenous mitochondrial nutrient, holds promising potential for addressing hyperlipidemia-induced fatty liver conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脂肪量和肥胖相关脂肪(FTO)蛋白是双加氧酶Alkb家族的成员,可催化N6-甲基腺苷(m6A)的氧化去甲基化,N1-甲基腺苷(m1A),3-甲基胸腺嘧啶(m3T),单链核酸中的3-甲基尿嘧啶(m3U)。充分确定FTO的催化活性通过两个偶联反应进行。第一个反应涉及α-酮戊二酸(αKG)的脱羧和形成氧铁基物质。在第二个反应中,氧铁基中间体氧化甲基化的核酸以重建Fe(II)和标准碱基。然而,尚不清楚核酸的结合如何激活αKG脱羧反应,以及为什么FTO以不同的速率使不同的甲基修饰脱甲基。这里,我们研究了FTO与掺入m6A的5聚体DNA寡核苷酸的相互作用,m1A,或使用溶液NMR进行m3T修改,分子动力学(MD)模拟,和酶分析。我们表明,核酸与FTO的结合激活了αKG共底物中的两状态构象平衡,从而调节了Fe(II)催化剂的O2可及性。值得注意的是,对其中Fe(II)暴露于O2的αKG构象提供更好稳定性的底物通过FTO更有效地脱甲基。这些结果表明,i)需要结合甲基化的核酸以将催化金属暴露于O2并激活αKG脱羧反应,和ii)所测量的去甲基化反应的转化率(是整个样品的总体平均值)取决于甲基化碱有利于O2可达到的Fe(II)态的能力。
    The fat mass and obesity-associated fatso (FTO) protein is a member of the Alkb family of dioxygenases and catalyzes oxidative demethylation of N6-methyladenosine (m6A), N1-methyladenosine (m1A), 3-methylthymine (m3T), and 3-methyluracil (m3U) in single-stranded nucleic acids. It is well established that the catalytic activity of FTO proceeds via two coupled reactions. The first reaction involves decarboxylation of alpha-ketoglutarate (αKG) and formation of an oxyferryl species. In the second reaction, the oxyferryl intermediate oxidizes the methylated nucleic acid to reestablish Fe(II) and the canonical base. However, it remains unclear how binding of the nucleic acid activates the αKG decarboxylation reaction and why FTO demethylates different methyl modifications at different rates. Here, we investigate the interaction of FTO with 5-mer DNA oligos incorporating the m6A, m1A, or m3T modifications using solution NMR, molecular dynamics (MD) simulations, and enzymatic assays. We show that binding of the nucleic acid to FTO activates a two-state conformational equilibrium in the αKG cosubstrate that modulates the O2 accessibility of the Fe(II) catalyst. Notably, the substrates that provide better stabilization to the αKG conformation in which Fe(II) is exposed to O2 are demethylated more efficiently by FTO. These results indicate that i) binding of the methylated nucleic acid is required to expose the catalytic metal to O2 and activate the αKG decarboxylation reaction, and ii) the measured turnover of the demethylation reaction (which is an ensemble average over the entire sample) depends on the ability of the methylated base to favor the Fe(II) state accessible to O2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    深层和不规则伤口的严重出血在院前和手术环境中构成了重大挑战。为了解决这个问题,我们使用Fe3O4开发了一种新型的基于壳聚糖的止血敷料,该敷料具有磁性靶向机制,称为牛血清白蛋白修饰的Fe3O4嵌入多孔α-酮戊二酸/壳聚糖(BSA/Fe3O4@KA/CS)。该敷料通过将药剂磁性引导至伤口部位来增强止血。体外,BSA/Fe3O4@KA/CS的止血功效与商业壳聚糖(Celox™)相当,并且不会因修饰而降低。在体内,与Celox™相比,BSA/Fe3O4@KA/CS表现出优异的止血性能和减少的失血。BSA/Fe3O4@KA/CS的止血机制包括通过水吸收浓缩固体血液成分,粘附于血细胞,和内源性凝血途径的激活。磁场靶向在将敷料引导至深度出血部位时至关重要。此外,安全性评估证实了BSA/Fe3O4@KA/CS的生物相容性和生物降解性。总之,我们介绍了一种利用磁性引导对壳聚糖进行有效止血的新方法,将BSA/Fe3O4@KA/CS定位为处理各种伤口的有希望的候选者。
    Severe bleeding from deep and irregular wounds poses a significant challenge in prehospital and surgical settings. To address this issue, we developed a novel chitosan-based hemostatic dressing with a magnetic targeting mechanism using Fe3O4, termed bovine serum albumin-modified Fe3O4 embedded in porous α-ketoglutaric acid/chitosan (BSA/Fe3O4@KA/CS). This dressing enhances hemostasis by magnetically guiding the agent to the wound site. In vitro, the hemostatic efficacy of BSA/Fe3O4@KA/CS is comparable to that of commercial chitosan (Celox™) and is not diminished by the modification. In vivo, BSA/Fe3O4@KA/CS demonstrated superior hemostatic performance and reduced blood loss compared to Celox™. The hemostatic mechanism of BSA/Fe3O4@KA/CS includes the concentration of solid blood components through water absorption, adherence to blood cells, and activation of the endogenous coagulation pathway. Magnetic field targeting is crucial in directing the dressing to deep hemorrhagic sites. Additionally, safety assessments have confirmed the biocompatibility and biodegradability of BSA/Fe3O4@KA/CS. In conclusion, we introduce a novel approach to modify chitosan using magnetic guidance for effective hemostasis, positioning BSA/Fe3O4@KA/CS as a promising candidate for managing various wounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    羟甲妥因是一种重要的相容性溶质,具有开发成为具有广泛应用价值的高价值化学品的潜力。然而,传统的高盐发酵生产羟基异黄酮对高盐废水的处理提出了挑战。这里,我们报道了在低盐条件下对唾液Halomonassalifodinae进行的合理工程,以提高羟基艾托宁的生物生产。比较转录组分析表明,编码ectoine羟化酶(EctD)的ectD基因的表达增加和负责三羧酸(TCA)循环的基因的表达减少导致了在高盐条件下生长的H.salifodinaeIM328中羟基ectoine的产生增加。通过阻断艾克托因和羟基艾克托因的降解途径,增强ectD的表达,增加2-氧戊二酸的供应,工程H.salifodinae菌株HS328-YNP15(ΔdoeA::PUP119-ectDp-gdh)产生的羟基艾托因产量比野生型菌株高8.3倍,最终在补料中达到了4.9g/L的羟基艾托因滴度。分批发酵没有任何详细的过程优化。这项研究表明,将羟基艾托宁生产整合到在低盐度和高碱度条件下运行的开放式非无菌发酵过程中的潜力,为下一代工业生物技术铺平道路。关键点:•在H.salifodinae中的羟基胞嘧啶的产生与培养基的盐度相关•转录组学分析揭示了羟基胞嘧啶产生的限制因素•工程菌株产生的羟基胞嘧啶比野生型多8.3倍。
    Hydroxyectoine is an important compatible solute that holds potential for development into a high-value chemical with broad applications. However, the traditional high-salt fermentation for hydroxyectoine production presents challenges in treating the high-salt wastewater. Here, we report the rational engineering of Halomonas salifodinae to improve the bioproduction of hydroxyectoine under lower-salt conditions. The comparative transcriptomic analysis suggested that the increased expression of ectD gene encoding ectoine hydroxylase (EctD) and the decreased expressions of genes responsible for tricarboxylic acid (TCA) cycle contributed to the increased hydroxyectoine production in H. salifodinae IM328 grown under high-salt conditions. By blocking the degradation pathway of ectoine and hydroxyectoine, enhancing the expression of ectD, and increasing the supply of 2-oxoglutarate, the engineered H. salifodinae strain HS328-YNP15 (ΔdoeA::PUP119-ectD p-gdh) produced 8.3-fold higher hydroxyectoine production than the wild-type strain and finally achieved a hydroxyectoine titer of 4.9 g/L in fed-batch fermentation without any detailed process optimization. This study shows the potential to integrate hydroxyectoine production into open unsterile fermentation process that operates under low-salinity and high-alkalinity conditions, paving the way for next-generation industrial biotechnology. KEY POINTS: • Hydroxyectoine production in H. salifodinae correlates with the salinity of medium • Transcriptomic analysis reveals the limiting factors for hydroxyectoine production • The engineered strain produced 8.3-fold more hydroxyectoine than the wild type.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    木瓜(TCS)果实中的总三萜是预防和治疗胃粘膜损伤的活性成分,具有潜在的抗衰老作用。然而,目前尚不清楚TCS是否能改善胃老化,尤其是其抗胃衰老的分子机制。在此基础上,本研究探讨了TCS对D-半乳糖(D-gal)诱导的衰老GES-1细胞的作用及机制,为临床应用TCS预防胃衰老提供科学依据。用D-gal诱导体外培养的GES-1细胞和用谷氨酰胺酶1(GLS1)的过表达GLS1(GLS1-OE)质粒转染的GES-1细胞衰老,然后给予TCS和/或GLS1抑制剂双-2-(5-苯基乙酰氨基-1,3,4-噻二唑-2-基)乙基硫醚(BPTES)。细胞存活率,β-半乳糖苷酶(SA-β-gal)染色阳性率,线粒体膜电位(MMP),和细胞凋亡进行了研究。GLS1活性,谷氨酰胺(Gln)水平,谷氨酸(Glu),α-酮戊二酸(α-KG)尿素,酶联免疫吸附试验(ELISA)和比色法检测上清液和细胞中的氨。采用实时荧光定量PCR和Westernblot检测GLS1及线粒体凋亡信号通路相关基因的mRNA和蛋白表达。结果表明,与D-gal模型组和GLS1-OED-gal模型组相比,TCS显著降低了D-gal诱导的衰老GES-1细胞和GLS1-OE衰老GES-1细胞的SA-β-gal染色阳性细胞率和MMP,抑制衰老细胞的存活,并促进其凋亡(P&lt;0.01)。它降低了GLS1的活性和Gln的含量,Glu,α-KG,尿素,上清液和细胞中的氨(P&lt;0.01),降低线粒体中细胞色素C(CytoC)的浓度和细胞中GLS1和增殖核抗原的mRNA和蛋白表达(P<0.01)。Bcl-2和Bcl-xl的mRNA表达,细胞中pro-caspase-9和pro-caspase-3的蛋白表达以及Bcl-2/Bax和Bcl-xl/Bad的比例降低(P&lt;0.01)。细胞质中的CytoC浓度,Bax的mRNA表达,糟糕,凋亡蛋白酶激活因子1(Apaf-1),cleaved-caspase-9、cleaved-caspase-3、cleaved-PARP-1蛋白表达增加(P<0.01)。上述结果表明,TCS可以对抗D-gal诱导的GES-1细胞衰老,其机制可能与抑制Gln/GLS1/α-KG代谢轴密切相关,激活线粒体凋亡途径,从而加速衰老细胞的凋亡并消除衰老细胞。
    Total triterpenoids from the fruits of Chaenomeles speciosa(TCS) are active components in the prevention and treatment of gastric mucosal damage, which have potential anti-aging effects. However, it is still unclear whether TCS can improve gastric aging, especially its molecular mechanism against gastric aging. On this basis, this study explored the effect and mechanism of TCS on senescent GES-1 cells induced by D-galactose(D-gal) to provide scientific data for the clinical use of TCS to prevent gastric aging. GES-1 cells cultured in vitro and those transfected with overexpression GLS1(GLS1-OE) plasmid of glutaminase 1(GLS1) were induced to aging by D-gal, and then TCS and or GLS1 inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide(BPTES) were given. Cell survival rate, positive rate of β-galactosidase(SA-β-gal) staining, mitochondrial membrane potential(MMP), and apoptosis were investigated. GLS1 activity, levels of glutamine(Gln), glutamate(Glu), α-ketoglutarate(α-KG), urea, and ammonia in supernatant and cells were detected by enzyme-linked immunosorbent assay(ELISA) and colorimetric methods. The mRNA and protein expressions of GLS1 and the related genes of the mitochondrial apoptosis signaling pathway were measured by real-time fluorescence quantitative PCR and Western blot. The results manifested that compared with the D-gal model group and GLS1-OE D-gal model group, TCS significantly decreased the SA-β-gal staining positive cell rate and MMP of D-gal-induced senescent GES-1 cells and GLS1-OE senescent GES-1 cells, inhibited the survival of senescent cells, and promoted their apoptosis(P<0.01). It decreased the activity of GLS1 and the content of Gln, Glu, α-KG, urea, and ammonia in supernatant and cell(P<0.01), reduced the concentration of cytochrome C(Cyto C) in mitochondria and the mRNA and protein expressions of GLS1 and proliferating nuclear antigen in cells(P<0.01). The mRNA expression of Bcl-2 and Bcl-xl, the protein expression of pro-caspase-9 and pro-caspase-3, and the ratio of Bcl-2/Bax and Bcl-xl/Bad in cells were decreased(P<0.01). Cyto C concentration in the cytoplasm, the mRNA expressions of Bax, Bad, apoptosis protease activating factor 1(Apaf-1), and protein expressions of cleaved-caspase-9, cleaved-caspase-3, cleaved-PARP-1 were increased(P<0.01). The aforementioned results indicate that TCS can counteract the senescent GES-1 cells induced by D-gal, and its mechanism may be closely related to suppressing the Gln/GLS1/α-KG metabolic axis, activating the mitochondrial apoptosis pathway, and thereby accelerating the apoptosis of the senescent cells and eliminating senescent cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非血红素Fe(II)和2-酮戊二酸(2OG)依赖性组蛋白赖氨酸去甲基酶2A(KDM2A)催化组蛋白H3肽(H3K36me1/me2)中的单或二甲基化赖氨酸36残基的去甲基化,在表观遗传调控中起着至关重要的作用,并且可以参与许多癌症。尽管已经研究了KDMs的整体催化机理,与其他KDMs相比,KDM2催化是如何发生的仍然未知。了解这些差异对于酶的重新设计至关重要,并且可以帮助酶选择性药物设计。在这里,我们采用分子动力学(MD)和组合量子力学/分子力学(QM/MM)来探索KDM2A的完整催化机理,包括双氧扩散和结合,双氧活化,和底物氧化。我们的研究表明,KDM2A的催化受第二配位球(SCS)的构象变化控制,特别是通过改变Y222的方向,从而解锁从离线到在线模式的20G重排。研究表明,变体Y222A使20G重排更有利。此外,研究表明,正是H3K36me3的大小阻止了20G的重排,从而使酶与三甲基化赖氨酸失活。计算表明,稳定KDM2A中HAT过渡态的SCS和长程相互作用残基与KDM4A中的不同,KDM7B,和KDM6A,从而为KDM2A的酶选择性重新设计和调节提供了基础,而不影响其他KDMs。
    Nonheme Fe(II) and 2-oxoglutarate (2OG)-dependent histone lysine demethylases 2A (KDM2A) catalyze the demethylation of the mono- or dimethylated lysine 36 residue in the histone H3 peptide (H3K36me1/me2), which plays a crucial role in epigenetic regulation and can be involved in many cancers. Although the overall catalytic mechanism of KDMs has been studied, how KDM2 catalysis takes place in contrast to other KDMs remains unknown. Understanding such differences is vital for enzyme redesign and can help in enzyme-selective drug design. Herein, we employed molecular dynamics (MD) and combined quantum mechanics/molecular mechanics (QM/MM) to explore the complete catalytic mechanism of KDM2A, including dioxygen diffusion and binding, dioxygen activation, and substrate oxidation. Our study demonstrates that the catalysis of KDM2A is controlled by the conformational change of the second coordination sphere (SCS), specifically by a change in the orientation of Y222, which unlocks the 2OG rearrangement from off-line to in-line mode. The study demonstrates that the variant Y222A makes the 2OG rearrangement more favorable. Furthermore, the study reveals that it is the size of H3K36me3 that prevents the 2OG rearrangement, thus rendering the enzyme inactivity with trimethylated lysine. Calculations show that the SCS and long-range interacting residues that stabilize the HAT transition state in KDM2A differ from those in KDM4A, KDM7B, and KDM6A, thus providing the basics for the enzyme-selective redesign and modulation of KDM2A without influencing other KDMs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号