KCNMB2

KCNMB2
  • 文章类型: Journal Article
    BKK+通道是神经元和肌肉兴奋性的关键调节因子,由来自KCNMA1基因的成孔α亚基和细胞和组织选择性β亚基(KCNMB1-4)的四聚体组成。KCNMA1的突变与神经系统疾病有关,包括自闭症。然而,关于神经元BK通道β亚基在人类神经病理学中的作用知之甚少。β2亚基在中枢神经元中表达,并使BK通道失活,以及改变激活和去激活门控。在这项研究中,我们报道了G124R的功能效应,从1例自闭症谱系障碍患者的全外显子组测序中获得的一种新的KCNMB2突变.残基G124位于TM1和TM2之间的胞外环中,在物种之间是保守的,G124R错义突变是用计算工具预测的。为了研究致病性潜力,BK通道在HEK293T细胞中与β2WT和β2G124R亚基共表达。在激活和失活过程中(电压依赖性和动力学),在生理K条件(140/6mMK和10μMCa2)下,从内向外的贴片评估BK/β2电流。使用缺乏失活的β2亚基(β2IR)表明,与来自BK/β2IRWT通道的电流相比,来自BK/β2IRG124R通道的电流激活快2倍,失活慢2倍,激活的电压依赖性没有变化(V1/2)。尽管BK通道的打开和关闭发生了变化,BK/β2G124R失活率(τinact和τrecovery),和失活的V1/2,在标准稳态电压方案下,与BK/β2WT通道相比没有改变。动作电位诱发的电流也没有变化。因此,突变表型表明β2G124RTM1-TM2胞外环可以调节BK通道的激活和失活动力学。然而,需要更多的证据来验证KCNMB2中这种患者相关变异体的致病性.
    BK K+ channels are critical regulators of neuron and muscle excitability, comprised of a tetramer of pore-forming αsubunits from the KCNMA1 gene and cell- and tissue-selective β subunits (KCNMB1-4). Mutations in KCNMA1 are associated with neurological disorders, including autism. However, little is known about the role of neuronal BK channel β subunits in human neuropathology. The β2 subunit is expressed in central neurons and imparts inactivation to BK channels, as well as altering activation and deactivation gating. In this study, we report the functional effect of G124R, a novel KCNMB2 mutation obtained from whole-exome sequencing of a patient diagnosed with autism spectrum disorder. Residue G124, located in the extracellular loop between TM1 and TM2, is conserved across species, and the G124R missense mutation is predicted deleterious with computational tools. To investigate the pathogenicity potential, BK channels were co-expressed with β2WT and β2G124R subunits in HEK293T cells. BK/β2 currents were assessed from inside-out patches under physiological K+ conditions (140/6 mM K+ and 10 μM Ca2+) during activation and inactivation (voltage-dependence and kinetics). Using β2 subunits lacking inactivation (β2IR) revealed that currents from BK/β2IRG124R channels activated 2-fold faster and deactivated 2-fold slower compared with currents from BK/β2IRWT channels, with no change in the voltage-dependence of activation (V1/2). Despite the changes in the BK channel opening and closing, BK/β2G124R inactivation rates (τinact and τrecovery), and the V1/2 of inactivation, were unaltered compared with BK/β2WT channels under standard steady-state voltage protocols. Action potential-evoked current was also unchanged. Thus, the mutant phenotype suggests the β2G124R TM1-TM2 extracellular loop could regulate BK channel activation and deactivation kinetics. However, additional evidence is needed to validate pathogenicity for this patient-associated variant in KCNMB2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    钾离子浓度,由离子泵和钾通道控制,主要控制细胞的膜电位和血管中的音调。钙激活的钾通道响应两种不同的刺激-电压变化和/或细胞内游离钙的变化。大电导钙激活钾(BKCa)通道由孔形成和各种调节和辅助亚基组装而成。由于它们非常高的单位电导和因此它们快速引起膜电位极端变化的能力,它们具有至关重要的意义。一般肺部疾病的病理生理学和肺动脉高压,特别是,显示BKCa通道及其亚基的表达降低和部分失活或编码通道不同亚基的基因中的突变的含义。信号分子,循环体液分子,血管松弛剂,等。,对肺动脉血管细胞通道的开放概率有影响。BKCa通道是一个可能的治疗靶点,目的是在收缩或慢性僵硬的血管中引起血管舒张,如各种动物模型所示。这篇综述是对低氧(低氧性肺血管收缩;HPV)下肺循环中BKCa通道研究的全面整理,肺病理学,胎儿到新生儿的过渡,强调药物干预是可行的治疗选择。
    Potassium ion concentrations, controlled by ion pumps and potassium channels, predominantly govern a cell\'s membrane potential and the tone in the vessels. Calcium-activated potassium channels respond to two different stimuli-changes in voltage and/or changes in intracellular free calcium. Large conductance calcium-activated potassium (BKCa) channels assemble from pore forming and various modulatory and auxiliary subunits. They are of vital significance due to their very high unitary conductance and hence their ability to rapidly cause extreme changes in the membrane potential. The pathophysiology of lung diseases in general and pulmonary hypertension, in particular, show the implication of either decreased expression and partial inactivation of BKCa channel and its subunits or mutations in the genes encoding different subunits of the channel. Signaling molecules, circulating humoral molecules, vasorelaxant agents, etc., have an influence on the open probability of the channel in pulmonary arterial vascular cells. BKCa channel is a possible therapeutic target, aimed to cause vasodilation in constricted or chronically stiffened vessels, as shown in various animal models. This review is a comprehensive collation of studies on BKCa channels in the pulmonary circulation under hypoxia (hypoxic pulmonary vasoconstriction; HPV), lung pathology, and fetal to neonatal transition, emphasising pharmacological interventions as viable therapeutic options.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    BK channels are known regulators of neuronal excitability, synaptic plasticity, and memory. Our previous study showed that a paternal methyl donor-rich diet reduced the expression of Kcnmb2, which encodes BK channel subunit beta 2, and caused memory deficits in offspring mice. To explore the underlying cellular mechanisms, we investigated the intrinsic and synaptic properties of CA1 pyramidal neurons of the F1 offspring mice whose fathers were fed with either a methyl donor-rich diet (MD) or regular control diet (CD) for 6 weeks before mating. Whole-cell patch-clamp recordings of CA1 pyramidal neurons revealed a decrease in intrinsic excitability and reduced frequency of inhibitory post-synaptic currents in MD F1 mice compared to the CD F1 controls. AAV-based overexpression of Kcnmb2 in dorsal CA1 ameliorated changes in neuronal excitability, synaptic transmission, and plasticity in MD F1 mice. Our findings thus indicate that a transient paternal exposure to a methyl donor-rich diet prior to mating alters Kcnmb2-sensitive hippocampal functions in offspring animals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    复杂的声学刺激的感知始于将声音分解为其频率分量。这种光谱处理首先发生在内耳中。在脊椎动物中,两种截然不同的频率分析策略已经发展起来。在非哺乳动物脊椎动物中,内耳的感觉毛细胞本质上是电调谐到一个窄带的声频。这种电调谐依赖于BK通道和电压门控钙通道之间的相互作用。BK通道密度和动力学的系统变化建立了电共振的梯度,从而可以对宽范围的声学频率进行编码。相比之下,哺乳动物毛细胞通过耳蜗管的机械特性进行外在调节。即便如此,哺乳动物毛细胞也表达BK通道。这些BK通道在哺乳动物听觉信号的各个方面发挥关键作用,从发育成熟到保护免受声学创伤。这篇综述总结了解剖学定位,生物物理特性,脊椎动物内耳中BK通道的功能贡献。未来的研究领域,基于对BK通道和内耳生物学的最新理解,也突出了。内耳BK通道的研究继续为检查BK通道生物物理学和听觉外围信号处理的分子机制提供了肥沃的研究基础。
    The perception of complex acoustic stimuli begins with the deconstruction of sound into its frequency components. This spectral processing occurs first and foremost in the inner ear. In vertebrates, two very different strategies of frequency analysis have evolved. In nonmammalian vertebrates, the sensory hair cells of the inner ear are intrinsically electrically tuned to a narrow band of acoustic frequencies. This electrical tuning relies on the interplay between BK channels and voltage-gated calcium channels. Systematic variations in BK channel density and kinetics establish a gradient in electrical resonance that enables the coding of a broad range of acoustic frequencies. In contrast, mammalian hair cells are extrinsically tuned by mechanical properties of the cochlear duct. Even so, mammalian hair cells also express BK channels. These BK channels play critical roles in various aspects of mammalian auditory signaling, from developmental maturation to protection against acoustic trauma. This review summarizes the anatomical localization, biophysical properties, and functional contributions of BK channels in vertebrate inner ears. Areas of future research, based on an updated understanding of the biology of both BK channels and the inner ear, are also highlighted. Investigation of BK channels in the inner ear continues to provide fertile research grounds for examining both BK channel biophysics and the molecular mechanisms underlying signal processing in the auditory periphery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号