Iron-Sulfur clusters

  • 文章类型: Journal Article
    正确折叠的蛋白质组的维持对于细胞功能和机体健康至关重要。其年龄依赖性崩溃与多种疾病相关。这里,我们发现,尽管辅酶A作为分子辅因子在数百种细胞反应中起着核心作用,限制秀丽隐杆线虫和人类细胞中的辅酶A水平,通过抑制保守的泛酸激酶,促进蛋白质稳定。胞质铁硫簇形成途径的损害,这取决于辅酶A,类似地促进蛋白质稳定并在同一途径中起作用。辅酶A/铁-硫簇缺乏对蛋白质稳定的改善依赖于保守的HLH-30/TFEB转录因子。引人注目的是,在这些条件下,HLH-30通过增强选择伴侣基因的表达来促进蛋白质稳定,从而提供伴侣介导的蛋白质稳定屏蔽,而不是由于其作为自噬和溶酶体生物发生促进因子的作用。这反映了这种保守转录因子的多功能性,可以转录激活广泛的蛋白质质量控制机制,包括伴侣和应激反应基因以及自噬和溶酶体生物发生基因。这些结果突出了TFEB作为关键的促进蛋白质停滞的转录因子,并强调了它及其上游调节因子作为蛋白质停滞相关疾病的潜在治疗靶标。
    The maintenance of a properly folded proteome is critical for cellular function and organismal health, and its age-dependent collapse is associated with a wide range of diseases. Here, we find that despite the central role of Coenzyme A as a molecular cofactor in hundreds of cellular reactions, limiting Coenzyme A levels in C. elegans and in human cells, by inhibiting the conserved pantothenate kinase, promotes proteostasis. Impairment of the cytosolic iron-sulfur clusters formation pathway, which depends on Coenzyme A, similarly promotes proteostasis and acts in the same pathway. Proteostasis improvement by Coenzyme A/iron-sulfur cluster deficiencies are dependent on the conserved HLH-30/TFEB transcription factor. Strikingly, under these conditions, HLH-30 promotes proteostasis by potentiating the expression of select chaperone genes providing a chaperone-mediated proteostasis shield, rather than by its established role as an autophagy and lysosome biogenesis promoting factor. This reflects the versatile nature of this conserved transcription factor, that can transcriptionally activate a wide range of protein quality control mechanisms, including chaperones and stress response genes alongside autophagy and lysosome biogenesis genes. These results highlight TFEB as a key proteostasis-promoting transcription factor and underscore it and its upstream regulators as potential therapeutic targets in proteostasis-related diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    铁硫(Fe-S)团簇普遍存在,是维持基本生命过程所必需的。细胞内Fe-S簇不会自发形成,许多蛋白质是其生物合成和递送所必需的。细菌P-loopNTPase家族蛋白ApbC参与Fe-S簇组装并将簇转化为载脂蛋白,WalkerA基序和CxxC基序对于ApbC在Fe-S蛋白生物合成中的功能至关重要。然而,ApbC活性和基序作用的结构基础尚不清楚。这里,我们以2.8µ分辨率报告了大肠杆菌ApbC的晶体结构。二聚体结构为W形,活性位点位于2折中心。基序的功能可以通过结构分析来注释。ApbC有一个额外的N端结构域,不同于其他P-loopNTPase,可能赋予其在体内的固有特异性。
    Iron-sulfur (Fe-S) clusters are ubiquitous and are necessary to sustain basic life processes. The intracellular Fe-S clusters do not form spontaneously and many proteins are required for their biosynthesis and delivery. The bacterial P-loop NTPase family protein ApbC participates in Fe-S cluster assembly and transfers the cluster into apoproteins, with the Walker A motif and CxxC motif being essential for functionality of ApbC in Fe-S protein biogenesis. However, the structural basis underlying the ApbC activity and the motifs\' role remains unclear. Here, we report the crystal structure of Escherichia coli ApbC at 2.8 Å resolution. The dimeric structure is in a W shape and the active site is located in the 2-fold center. The function of the motifs can be annotated by structural analyses. ApbC has an additional N-terminal domain that differs from other P-loop NTPases, possibly conferring its inherent specificity in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Case Reports
    目的:许多细胞蛋白的功能取决于辅因子,然而,它们只与少数孟德尔疾病有牵连。这里,我们描述了细胞溶质铁硫蛋白组装系统的前两种遗传性疾病方法:通过基因组测序进行遗传检测,以确定3例小头畸形患者的潜在疾病原因,先天性脑畸形,进行性发育和神经损伤,反复感染,和致命的结果。在患者来源的皮肤成纤维细胞和斑马鱼模型中进行研究以研究生化和细胞后果。结果:代谢分析显示体液中尿嘧啶和胸腺嘧啶水平升高,但DPYD中没有致病性变异。基因组测序确定了两名患者在CIAO1中的错义变体的化合物杂合性和在第三名患者的MMS19中的框内3核苷酸缺失的纯合性。蛋白质组的深刻改变,在患者来源的成纤维细胞中观察到代谢组和脂质组.我们在斑马鱼模型中证实了CIAO1和MMS19缺陷的有害作用。结论:胞浆和核铁硫蛋白成熟的一般失败导致多效性作用。胞质铁-硫蛋白组装机制用于抗病毒宿主防御的关键功能可能很好地解释了我们患者反复发生的严重感染。
    The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system.
    Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome. Studies in patient-derived skin fibroblasts and zebrafish models were performed to investigate the biochemical and cellular consequences.
    Metabolic analysis showed elevated uracil and thymine levels in body fluids but no pathogenic variants in DPYD, encoding dihydropyrimidine dehydrogenase. Genome sequencing identified compound heterozygosity in 2 patients for missense variants in CIAO1, encoding cytosolic iron-sulfur assembly component 1, and homozygosity for an in-frame 3-nucleotide deletion in MMS19, encoding the MMS19 homolog, cytosolic iron-sulfur assembly component, in the third patient. Profound alterations in the proteome, metabolome, and lipidome were observed in patient-derived fibroblasts. We confirmed the detrimental effect of deficiencies in CIAO1 and MMS19 in zebrafish models.
    A general failure of cytosolic and nuclear iron-sulfur protein maturation caused pleiotropic effects. The critical function of the cytosolic iron-sulfur protein assembly machinery for antiviral host defense may well explain the recurrent severe infections occurring in our patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    谷胱甘肽(GSH)是在细胞中执行多种保护和生物合成功能的高度丰富的三肽硫醇。虽然GSH可用性的变化与先天代谢错误有关,癌症和神经退行性疾病,研究GSH在生理和疾病中的限制性作用一直具有挑战性,因为它的严格调控。为了解决这个问题,我们从嗜热链球菌(GshF)中产生了表达双功能谷胱甘肽合成酶的细胞和小鼠模型,具有谷氨酸-半胱氨酸连接酶和谷胱甘肽合酶活性。GshF表达允许在胞质溶胶和线粒体中有效生产GSH,并防止响应GSH消耗的细胞死亡。但不是铁性凋亡诱导,表明GSH不是脂质过氧化作用下的限制因素。使用工程酶的CRISPR筛选进一步揭示了在细胞和线粒体GSH消耗下细胞增殖所需的基因。其中,我们确定了谷氨酸-半胱氨酸连接酶修饰亚基,Gclm,作为细胞对丁硫氨酸磺胺的敏感性的要求,谷胱甘肽合成抑制剂。最后,GshF在小鼠中的表达是胚胎致死性的,但是当限于成年期时维持出生后的活力。总的来说,我们的工作确定了一个条件小鼠模型,以研究GSH在生理和疾病中的限制作用。
    Glutathione (GSH) is a highly abundant tripeptide thiol that performs diverse protective and biosynthetic functions in cells. While changes in GSH availability are associated with inborn errors of metabolism, cancer, and neurodegenerative disorders, studying the limiting role of GSH in physiology and disease has been challenging due to its tight regulation. To address this, we generated cell and mouse models that express a bifunctional glutathione-synthesizing enzyme from Streptococcus thermophilus (GshF), which possesses both glutamate-cysteine ligase and glutathione synthase activities. GshF expression allows efficient production of GSH in the cytosol and mitochondria and prevents cell death in response to GSH depletion, but not ferroptosis induction, indicating that GSH is not a limiting factor under lipid peroxidation. CRISPR screens using engineered enzymes further revealed genes required for cell proliferation under cellular and mitochondrial GSH depletion. Among these, we identified the glutamate-cysteine ligase modifier subunit, GCLM, as a requirement for cellular sensitivity to buthionine sulfoximine, a glutathione synthesis inhibitor. Finally, GshF expression in mice is embryonically lethal but sustains postnatal viability when restricted to adulthood. Overall, our work identifies a conditional mouse model to investigate the limiting role of GSH in physiology and disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    FeFe]-氢化酶有效地催化分子氢的可逆氧化。他们的能力源于复杂的H-簇,结合[Fe4S4]中心与双核铁中心([2Fe]H)。在后者中,每个铁原子由CO和CN配体配位,通过CO和氮杂硫醇盐配体连接。该活性位点的合成涉及独特的多蛋白组装,具有自由基SAM蛋白HydG和HydE。HydG引发L-酪氨酸转化为氰化物和一氧化碳生成络合物B,随后将其转移到HydE以继续[2Fe]H-亚簇的生物合成。由于其不稳定性,到目前为止,用于结构或光谱表征的复合物B分离一直难以捉摸。然而,使用复合物B的仿生化合物可以避免在体外功能研究期间对HydG蛋白的需求,暗示复杂B的类似结构。这里,我们使用HydE蛋白作为纳米笼封装和稳定由HydG产生的复合物B产物。用X射线晶体学,我们成功地确定了它的结构,分辨率为1.3。此外,我们证明了复合物B直接从HydG转移到HydE,因此不会在合成后释放到溶液中,突出显示两种蛋白质之间的短暂相互作用。
    [FeFe]-hydrogenases efficiently catalyze the reversible oxidation of molecular hydrogen. Their prowess stems from the intricate H-cluster, combining a [Fe4 S4 ] center with a binuclear iron center ([2Fe]H ). In the latter, each iron atom is coordinated by a CO and CN ligand, connected by a CO and an azadithiolate ligand. The synthesis of this active site involves a unique multiprotein assembly, featuring radical SAM proteins HydG and HydE. HydG initiates the transformation of L-tyrosine into cyanide and carbon monoxide to generate complex B, which is subsequently transferred to HydE to continue the biosynthesis of the [2Fe]H -subcluster. Due to its instability, complex B isolation for structural or spectroscopic characterization has been elusive thus far. Nevertheless, the use of a biomimetic analogue of complex B allowed circumvention of the need for the HydG protein during in vitro functional investigations, implying a similar structure for complex B. Herein, we used the HydE protein as a nanocage to encapsulate and stabilize the complex B product generated by HydG. Using X-ray crystallography, we successfully determined its structure at 1.3 Å resolution. Furthermore, we demonstrated that complex B is directly transferred from HydG to HydE, thus not being released into the solution post-synthesis, highlighting a transient interaction between the two proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    黄嘌呤氧化还原酶(XOR)催化嘌呤(次黄嘌呤和黄嘌呤)氧化为尿酸。XOR广泛用于各种治疗和生物技术应用。在这项研究中,我们表征了嗜酸硫杆菌TPY(SaXOR)的新型细菌XOR的生物物理和机械特性。我们的结果表明,SaXOR是由三个亚基组成的异源三聚体,即XoA,XoB,和XoC,表示钼辅因子(Moco),2Fe-2S,和FAD结合域,分别。发现XoC与XoB共表达时是稳定的,形成XoBC复合物。此外,我们通过柔性接头(fusXoBC)制备了XoB和XoC的融合体,并与XoBC相比评估了其功能。光谱分析显示XoB含有两个2Fe-2S团簇,而XoC携带单个结合的FAD辅因子。从XoC的还原形式的电子转移,XoBC,在氧化半反应过程中,与分子氧(O2)的fusXoBC没有产生黄素半醌,暗示从2Fe-2Sred到FAD的超快单电子转移。在XoA在场的情况下,XoBC和fusXoBC表现出相当的XoA亲和力,并利用共同的整体机制。尽管如此,联动可能会加速两步,从2Fe-2Sred到FAD的单电子转移级联,同时增加蛋白质的稳定性。总的来说,我们的发现为SaXOR特性和氧化机制提供了新的见解,这些机制与先前的哺乳动物和细菌XOR范例不同。
    Xanthine oxidoreductase (XOR) catalyzes the oxidation of purines (hypoxanthine and xanthine) to uric acid. XOR is widely used in various therapeutic and biotechnological applications. In this study, we characterized the biophysical and mechanistic properties of a novel bacterial XOR from Sulfobacillus acidophilus TPY (SaXOR). Our results showed that SaXOR is a heterotrimer consisting of three subunits, namely XoA, XoB, and XoC, which denote the molybdenum cofactor (Moco), 2Fe-2S, and FAD-binding domains, respectively. XoC was found to be stable when co-expressed with XoB, forming an XoBC complex. Furthermore, we prepared a fusion of XoB and XoC via a flexible linker (fusXoBC) and evaluated its function in comparison to that of XoBC. Spectroscopic analysis revealed that XoB harbors two 2Fe-2S clusters, whereas XoC bears a single-bound FAD cofactor. Electron transfer from reduced forms of XoC, XoBC, and fusXoBC to molecular oxygen (O2 ) during oxidative half-reaction yielded no flavin semiquinones, implying ultrafast single-electron transfer from 2Fe-2Sred to FAD. In the presence of XoA, XoBC and fusXoBC exhibited comparable XoA affinity and exploited a shared overall mechanism. Nonetheless, the linkage may accelerate the two-step, single-electron transfer cascade from 2Fe-2Sred to FAD while augmenting protein stability. Collectively, our findings provide novel insights into SaXOR properties and oxidation mechanisms divergent from prior mammalian and bacterial XOR paradigms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    原子定义的大金属簇在新的反应开发和制备具有定制性能的材料中具有应用。扩大合成工具箱的反应性高核金属配合物,我们报告了一类新的铁团簇,Tp*4W4Fe13S12,显示具有M-M键的Fe13核,仅在主族和晚期金属化学中具有先例。具有闭合壳电子构型的M13团簇可以显示出显着的稳定性,并已被归类为超原子。相比之下,Tp*4W4Fe13S12显示S=13的大自旋基态。该化合物进行小分子激活,涉及多达12个电子的转移,导致明显的簇重排。
    Atomically defined large metal clusters have applications in new reaction development and preparation of materials with tailored properties. Expanding the synthetic toolbox for reactive high nuclearity metal complexes, we report a new class of Fe clusters, Tp*4 W4 Fe13 S12 , displaying a Fe13 core with M-M bonds that has precedent only in main group and late metal chemistry. M13 clusters with closed shell electron configurations can show significant stability and have been classified as superatoms. In contrast, Tp*4 W4 Fe13 S12 displays a large spin ground state of S=13. This compound performs small molecule activations involving the transfer of up to 12 electrons resulting in significant cluster rearrangements.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    严重急性呼吸道综合征冠状病毒2(SARS-CoV-2),COVID-19的致病因子使用RNA依赖性RNA聚合酶和几种辅助因子来复制其基因组并转录其基因。非结构蛋白(nsp)13是病毒复制所需的解旋酶。这里,我们发现nsp13能结扎铁,除了锌,当缺氧纯化时。使用电感耦合等离子体质谱法,UV-可见光吸收,EPR,和穆斯堡尔谱,我们将nsp13表征为铁-硫(Fe-S)蛋白,该蛋白在其锌结合域的三通道金属结合位点中连接Fe4S4簇。nsp13中的Fe-S簇调节其与模板RNA的结合及其解旋活性。蛋白质暴露于稳定的氮氧化物TEMPOL会氧化和降解簇,并大大降低解链活性。因此,nsp13的最佳功能取决于不稳定的Fe-S簇,该簇可能可用于COVID-19治疗。
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, uses an RNA-dependent RNA polymerase along with several accessory factors to replicate its genome and transcribe its genes. Nonstructural protein (nsp) 13 is a helicase required for viral replication. Here, we found that nsp13 ligates iron, in addition to zinc, when purified anoxically. Using inductively coupled plasma mass spectrometry, UV-visible absorption, EPR, and Mössbauer spectroscopies, we characterized nsp13 as an iron-sulfur (Fe-S) protein that ligates an Fe4S4 cluster in the treble-clef metal-binding site of its zinc-binding domain. The Fe-S cluster in nsp13 modulates both its binding to the template RNA and its unwinding activity. Exposure of the protein to the stable nitroxide TEMPOL oxidizes and degrades the cluster and drastically diminishes unwinding activity. Thus, optimal function of nsp13 depends on a labile Fe-S cluster that is potentially targetable for COVID-19 treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    2型多发性线粒体功能障碍综合征伴高血糖症(MMDS2)是一种严重的线粒体能量代谢紊乱,与编码BOLA3的基因中的双等位基因突变相关,BOLA3是一种在铁-硫(Fe-S)簇生物发生中尚未完全了解的作用的蛋白质,但对于线粒体[4Fe-4S]蛋白的成熟至关重要。为了更好地理解BOLA3在MMDS2中的作用,我们调查了p.His96Arg(c.287A>G)点突变的影响,其中涉及高度保守的残留物,先前鉴定为BOLA3-[2Fe-2S]-GLRX5杂配合物中的[2Fe-2S]簇配体,对BOLA3蛋白结构和功能特性的研究。His96Arg突变与严重的MMDS2表型相关,以线粒体呼吸复合物和硫辛酸依赖性酶的活性缺陷为特征。尺寸排阻色谱法,NMR,UV-可见光,圆二色性,和EPR光谱表征表明,His96Arg突变不会损害BOLA3与其蛋白质伴侣GLRX5的相互作用,但会导致形成异常的BOLA3-[2Fe-2S]-GLRX5异质复合物,这在NFU1上的[4Fe-4S]簇的组装中不再起作用。这些结果使我们能够合理化由His96Arg突变引起的MMDS2中观察到的严重表型。
    Multiple mitochondrial dysfunctions syndrome type 2 with hyperglycinemia (MMDS2) is a severe disorder of mitochondrial energy metabolism, associated with biallelic mutations in the gene encoding for BOLA3, a protein with a not yet completely understood role in iron-sulfur (Fe-S) cluster biogenesis, but essential for the maturation of mitochondrial [4Fe-4S] proteins. To better understand the role of BOLA3 in MMDS2, we have investigated the impact of the p.His96Arg (c.287A > G) point mutation, which involves a highly conserved residue, previously identified as a [2Fe-2S] cluster ligand in the BOLA3-[2Fe-2S]-GLRX5 heterocomplex, on the structural and functional properties of BOLA3 protein. The His96Arg mutation has been associated with a severe MMDS2 phenotype, characterized by defects in the activity of mitochondrial respiratory complexes and lipoic acid-dependent enzymes. Size exclusion chromatography, NMR, UV-visible, circular dichroism, and EPR spectroscopy characterization have shown that the His96Arg mutation does not impair the interaction of BOLA3 with its protein partner GLRX5, but leads to the formation of an aberrant BOLA3-[2Fe-2S]-GLRX5 heterocomplex, that is not functional anymore in the assembly of a [4Fe-4S] cluster on NFU1. These results allowed us to rationalize the severe phenotype observed in MMDS2 caused by His96Arg mutation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    我们已经通过精炼研究了在固氮酶铁蛋白[4Fe:4S]簇的硫位点处,精炼的B因子如何随Z(散射体的原子序数)变化。开发了一个简单的模型,该模型定量地捕获了Z和B之间的观察关系,基于在散射体位置具有恒定电子密度的高斯电子密度分布。从这个分析,发现B和Z的分数变化相似。B因子细化可能区分原子类型的效用反映了X射线原子散射因子的Z依赖性;电子原子散射因子对Z的较弱依赖性意味着,与X射线衍射的情况相比,电子散射结构中B的细化值之间的区别对散射体的原子身份的敏感性较低。这种行为提供了可以从不同类型的散射研究中提取的互补信息的示例。
    We have examined how the refined B-factor changes as a function of Z (the atomic number of a scatterer) at the sulfur site of the [4Fe:4S] cluster of the nitrogenase iron protein by refinement. A simple model is developed that quantitatively captures the observed relationship between Z and B, based on a Gaussian electron density distribution with a constant electron density at the position of the scatterer. From this analysis, the fractional changes in B and Z are found to be similar. The utility of B-factor refinement to potentially distinguish atom types reflects the Z dependence of X-ray atomic scattering factors; the weaker dependence of electron atomic scattering factors on Z implies that distinctions between refined values of B in an electron scattering structure will be less sensitive to the atomic identity of a scatterer than for the case with X-ray-diffraction. This behavior provides an example of the complementary information that can be extracted from different types of scattering studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号