Ion Channel

离子通道
  • 文章类型: Journal Article
    内向整流钾通道Kir2.1(KCNJ2)是兴奋和非兴奋细胞中静息膜电位的重要调节剂。Kir2.1通道的功能依赖于它们的脂质环境,包括PI(4,5)P2、次级阴离子脂质、胆固醇和长链脂肪酸酰基辅酶A(LC-CoA)。内源性大麻素是一类在多种细胞中天然表达的脂质,包括心脏,神经元,和免疫细胞。虽然这些脂质被鉴定为大麻素受体的配体,但越来越多的证据表明它们可以独立于CBR直接调节许多离子通道的功能。在这里,我们研究了一组内源性大麻素对Kir2.1功能的影响,并证明了内源性大麻素的子集可以在不同程度上独立于CBR改变Kir2.1电导。使用计算和表面等离子体共振分析,内源性大麻素调节Kir2.1通道似乎是改变膜性质的结果,而不是通过直接的蛋白质-脂质相互作用。此外,内源性大麻素对Kir4.1和Kir7.1通道的影响差异,表明内源性大麻素调节在Kir家族成员中不保守。这些发现可能对心脏功能有更广泛的影响,神经元和/或免疫细胞。
    The inward rectifier potassium channel Kir2.1 (KCNJ2) is an important regulator of resting membrane potential in both excitable and non-excitable cells. The functions of Kir2.1 channels are dependent on their lipid environment, including the availability of PI(4,5)P2, secondary anionic lipids, cholesterol and long-chain fatty acids acyl coenzyme A (LC-CoA). Endocannabinoids are a class of lipids that are naturally expressed in a variety of cells, including cardiac, neuronal, and immune cells. While these lipids are identified as ligands for cannabinoid receptors there is a growing body of evidence that they can directly regulate the function of numerous ion channels independently of CBRs. Here we examine the effects of a panel of endocannabinoids on Kir2.1 function and demonstrate that a subset of endocannabinoids can alter Kir2.1 conductance to varying degrees independently of CBRs. Using computational and Surface plasmon resonance analysis, endocannabinoid regulation of Kir2.1 channels appears to be the result of altered membrane properties, rather than through direct protein-lipid interactions. Furthermore, differences in endocannabinoid effects on Kir4.1 and Kir7.1 channels, indicating that endocannabinoid regulation is not conserved among Kir family members. These findings may have broader implications on the function of cardiac, neuronal and/or immune cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Ryanodine受体(RyRs)是位于内质网或肌浆网膜中的大Ca2释放通道。已在哺乳动物中鉴定出RyR的三种同工型,其功能障碍与一系列危及生命的疾病有关。对大量天然组织或真核细胞培养物的需要限制了RyR结构研究的进展。这里,我们报道了一种利用纳米抗体从仅5mg总蛋白中纯化RyRs的方法。净化过程,从分离的膜到冷冻EM级蛋白质,在板凳上四个小时内完成,产生可用于低温EM分析的蛋白质。通过解决溶解在洗涤剂中的兔RyR1的结构来证明这一点,重构为脂质纳米盘或脂质体,牛RyR2在纳米圆盘中重建,和去污剂中的老鼠RyR2。所报道的方法促进了针对药物开发的RyR的结构研究,并且在起始材料的量有限的情况下是有用的。
    Ryanodine receptors (RyRs) are large Ca2+ release channels residing in the endoplasmic or sarcoplasmic reticulum membrane. Three isoforms of RyRs have been identified in mammals, the disfunction of which has been associated with a series of life-threatening diseases. The need for large amounts of native tissue or eukaryotic cell cultures limits advances in structural studies of RyRs. Here, we report a method that utilizes nanobodies to purify RyRs from only 5 mg of total protein. The purification process, from isolated membranes to cryo-EM grade protein, is achieved within four hours on the bench, yielding protein usable for cryo-EM analysis. This is demonstrated by solving the structures of rabbit RyR1, solubilized in detergent, reconstituted into lipid nanodiscs or liposomes, and bovine RyR2 reconstituted in nanodisc, and mouse RyR2 in detergent. The reported method facilitates structural studies of RyRs directed toward drug development and is useful in cases where the amount of starting material is limited.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    N-甲基-D-天冬氨酸(NMDA)受体是由两个强制性GluN1亚基和两个替代性GluN2或GluN3亚基组成的异四等离子通道,形成GluN1-N2、GluN1-N3和GluN1-N2-N3型NMDA受体。广泛的研究集中在常规GluN1-GluN2NMDA受体的功能和结构特性上,因为它们的早期发现和高表达水平。然而,关于非常规GluN1-N3NMDA受体的知识仍然有限.在这项研究中,我们模拟了GluN1-N3A,GluN1-N3B,和GluN1-N3A-N3BNMDA受体使用深度学习的蛋白质语言预测算法AlphaFold和RoseTTAFoldAll-Atom。然后,我们将这些结构与GluN1-N2和GluN1-N3A受体cryo-EM结构进行了比较,发现GluN1-N3受体在亚基排列方面具有不同的特性,域交换,和域交互。此外,我们预测了激动剂或拮抗剂结合的结构,突出关键的分子-残基相互作用。我们的发现为NMDA受体的结构和功能多样性提供了新的思路,为药物开发提供了新的方向。本研究使用先进的人工智能算法对GluN1-N3NMDA受体进行建模,揭示了与常规GluN1-N2受体相比独特的结构特性和相互作用。通过突出关键的分子-残基相互作用并预测配体结合的结构,我们的研究增强了对NMDA受体多样性的理解,并为靶向药物开发提供了新的见解.
    N-methyl-D-aspartate (NMDA) receptors are heterotetrametric ion channels composed of two obligatory GluN1 subunits and two alternative GluN2 or GluN3 subunits, forming GluN1-N2, GluN1-N3, and GluN1-N2-N3 type of NMDA receptors. Extensive research has focused on the functional and structural properties of conventional GluN1-GluN2 NMDA receptors due to their early discovery and high expression levels. However, the knowledge of unconventional GluN1-N3 NMDA receptors remains limited. In this study, we modeled the GluN1-N3A, GluN1-N3B, and GluN1-N3A-N3B NMDA receptors using deep-learned protein-language predication algorithms AlphaFold and RoseTTAFold All-Atom. We then compared these structures with GluN1-N2 and GluN1-N3A receptor cryo-EM structures and found that GluN1-N3 receptors have distinct properties in subunit arrangement, domain swap, and domain interaction. Furthermore, we predicted the agonist- or antagonist-bound structures, highlighting the key molecular-residue interactions. Our findings shed new light on the structural and functional diversity of NMDA receptors and provide a new direction for drug development. This study uses advanced AI algorithms to model GluN1-N3 NMDA receptors, revealing unique structural properties and interactions compared to conventional GluN1-N2 receptors. By highlighting key molecular-residue interactions and predicting ligand-bound structures, our research enhances the understanding of NMDA receptor diversity and offers new insights for targeted drug development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    猪瘟病毒(CSFV)p7病毒蛋白在细胞离子平衡和透化中起着至关重要的作用。抗病毒药物金刚烷胺通过阻断CSFVp7病毒的活性有效抑制病毒复制。然而,关于金刚烷胺与CSFVp7病毒蛋白的结合模式的信息很少,由于缺乏已知的CSFVp7聚合物结构。在这项研究中,我们使用AlphaFold2来预测CSFVp7结构。随后,我们进行了一项对接研究,以研究金刚烷胺与CSFVp7的结合位点。计算分析表明CSFVp7在六聚体结构中形成孔通道。此外,分子动力学(MD)模拟和突变体分析进一步表明,CSFVp7可能作为六聚体存在。对接研究和MD模拟表明,金刚烷胺与四聚体和五聚体的疏水区相互作用,以及六聚体的疏水孔通道。考虑到CSFVp7的潜在六聚体组装,以及对接结果,MD模拟,和门控离子通道的特性,我们提出了一种基于六聚体结构的CSFVp7离子通道模型。在这个模型中,建议残基E21、Y25和R34选择性募集和脱水离子,而残基L28和L31可能充当疏水性收缩体,从而限制水的自由流动。金刚烷胺与残基I20、E21、V24和Y25的结合有效地阻断了离子转运。然而,这个提出的分子模型需要实验验证。我们的发现为CSFVp7作为离子通道的模型提供了结构见解,并为金刚烷胺对CSFVp7介导的离子通道电导的抑制作用提供了分子解释。
    Classical swine fever virus (CSFV) p7 viroporin plays crucial roles in cellular ion balance and permeabilization. The antiviral drug amantadine effectively inhibits viral replication by blocking the activity of CSFV p7 viroporin. However, little information is available for the binding mode of amantadine with CSFV p7 viroporin, due to the lack of a known polymer structure for CSFV p7. In this study, we employed AlphaFold2 to predict CSFV p7 structures. Subsequently, we conducted a docking study to investigate the binding sites of amantadine to CSFV p7. Computational analysis showed that CSFV p7 forms a pore channel in a hexameric structure. Furthermore, molecular dynamics (MD) simulations and mutant analyses further suggest that CSFV p7 likely exists as a hexamer. Docking studies and MD simulations showed that amantadine interacts with the hydrophibic regions of tetramer and pentamer, as well as with the hydrophobic pore channel of the hexamer. Considering the potential hexameric assembly of CSFV p7, along with docking results, MD simulations, and the characteristics of the gated ion channels, we propose a model of CSFV p7 ion channel based on its hexameric configuration. In this model, residues E21, Y25, and R34 are suggested to selectively recruit and dehydrate ions, while residues L28 and L31 likely act as hydrophobic constrictors, thereby restricting the free movement of water. The binding of amantadine to residues I20, E21, V24 and Y25 effectively blocks ion transport. However, this proposed molecular model requires experimental validation. Our findings give a structural insight into the models of CSFV p7 as an ion channel and provide a molecular explanation for the inhibition effects of amantadine on CSFV p7-mediated ion channel conductance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们的研究探讨了与生育妇女相比,复发性植入失败(RIF)妇女子宫内膜离子通道基因表达的差异。我们分析了编码T型Ca2+的基因的相对表达,ENAC,CFTR,20名RIF感染妇女和10名对照妇女的子宫内膜样本中的KCNQ1通道,年龄22-35岁,通过微阵列分析和定量实时PCR。此外,我们使用ChIP实时PCR检测了KCNQ1调控区的DNA甲基化。我们研究的生物信息学部分包括基因本体论分析,蛋白质-蛋白质相互作用网络,和信号通路作图,以识别RIF中涉及的关键生物过程和通路。这导致发现在RIF女性子宫内膜中离子通道基因表达的显著改变,最值得注意的是CFTR的过表达和SCNN1A的表达降低,SCNN1B,SCNN1G,CACNA1H,和KCNQ1。在RIF患者中还观察到KCNQ1的调控区的DNA甲基化水平较高。基因集富集分析强调了与离子转运和膜电位调节有关的基因的显著存在。特别是在钠和钙通道复合物中,这对于阳离子跨细胞膜的运动至关重要。基因还富含更广泛的离子通道和跨膜转运蛋白复合物,强调了它们在细胞离子稳态和信号传导中的潜在广泛作用。这些发现表明离子通道可能参与植入失败的病理,为RIF背后的机制和可能的治疗靶点提供新的见解。
    Our study probed the differences in ion channel gene expression in the endometrium of women with Recurrent Implantation Failure (RIF) compared to fertile women. We analyzed the relative expression of genes coding for T-type Ca2+, ENaC, CFTR, and KCNQ1 channels in endometrial samples from 20 RIF-affected and 10 control women, aged 22-35, via microarray analysis and quantitative real-time PCR. Additionally, we examined DNA methylation in the regulatory region of KCNQ1 using ChIP real-time PCR. The bioinformatics component of our research included Gene Ontology analysis, protein-protein interaction networks, and signaling pathway mapping to identify key biological processes and pathways implicated in RIF. This led to the discovery of significant alterations in the expression of ion channel genes in RIF women\'s endometrium, most notably an overexpression of CFTR and reduced expression of SCNN1A, SCNN1B, SCNN1G, CACNA1H, and KCNQ1. A higher DNA methylation level of KCNQ1\'s regulatory region was also observed in RIF patients. Gene-set enrichment analysis highlighted a significant presence of genes involved with ion transport and membrane potential regulation, particularly in sodium and calcium channel complexes, which are vital for cation movement across cell membranes. Genes were also enriched in broader ion channel and transmembrane transporter complexes, underscoring their potential extensive role in cellular ion homeostasis and signaling. These findings suggest a potential involvement of ion channels in the pathology of implantation failure, offering new insights into the mechanisms behind RIF and possible therapeutic targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    KCTD家族蛋白通常组装成cullin-RINGE3连接酶。KCTD1是一种非典型成员,其作为转录阻遏物起作用。在头耳乳头综合征中KCTD1突变引起发育异常和肾脏纤维化。这里,我们从人类KCTD1的结构中提出了意想不到的机械见解。致病突变P20S映射到BTB结构域的未识别的延伸,这有助于其五聚体结构和TFAP2A结合。C末端结构域(CTD)与GTP环化水解酶I反馈调节蛋白(GFRP)共享其折叠和五聚体组装,尽管缺乏可辨别的序列相似性。最令人惊讶的是,KCTD1CTD建立了一个中央通道,由交替的钠和碘离子占据,限制了TFAP2A的解离。结构的阐明重新定义了KCTD1BTB结构域折叠,并确定了一个意想不到的离子结合位点,用于将来研究KCTD1在外胚层中的功能,神经嵴,还有肾.
    KCTD family proteins typically assemble into cullin-RING E3 ligases. KCTD1 is an atypical member that functions instead as a transcriptional repressor. Mutations in KCTD1 cause developmental abnormalities and kidney fibrosis in scalp-ear-nipple syndrome. Here, we present unexpected mechanistic insights from the structure of human KCTD1. Disease-causing mutation P20S maps to an unrecognized extension of the BTB domain that contributes to both its pentameric structure and TFAP2A binding. The C-terminal domain (CTD) shares its fold and pentameric assembly with the GTP cyclohydrolase I feedback regulatory protein (GFRP) despite lacking discernible sequence similarity. Most surprisingly, the KCTD1 CTD establishes a central channel occupied by alternating sodium and iodide ions that restrict TFAP2A dissociation. The elucidation of the structure redefines the KCTD1 BTB domain fold and identifies an unexpected ion-binding site for future study of KCTD1\'s function in the ectoderm, neural crest, and kidney.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    电压门控钠(Nav)通道感测膜电位并驱动细胞电活动。死亡缠扰蝎子α毒素LqhαIT对Nav通道具有很强的动作电位延长作用。为了阐明LqhαIT的作用机制,我们确定了LqhαIT的3.9贝达低温电子显微镜(cryo-EM)结构,该结构与来自美洲大猩猩(NavPas)的Nav通道复合。我们发现LqhαIT与电压传感器域4结合,并将其捕获为“S4down”构象。LqhαIT的功能必需C端表位与连接到NavPas的Asn330的聚糖支架形成广泛的界面,从而增强了NavPas和LqhαIT之间的小蛋白质-蛋白质界面。分子动力学模拟的组合,结构比较,和先前的诱变实验证明了这种毒素-聚糖相互作用的功能重要性。这些发现为蝎子α毒素实现的特异性建立了结构基础,并揭示了保守的聚糖作为毒素结合表位的必需成分。
    Voltage-gated sodium (Nav) channels sense membrane potential and drive cellular electrical activity. The deathstalker scorpion α-toxin LqhαIT exerts a strong action potential prolonging effect on Nav channels. To elucidate the mechanism of action of LqhαIT, we determined a 3.9 Å cryoelectron microscopy (cryo-EM) structure of LqhαIT in complex with the Nav channel from Periplaneta americana (NavPas). We found that LqhαIT binds to voltage sensor domain 4 and traps it in an \"S4 down\" conformation. The functionally essential C-terminal epitope of LqhαIT forms an extensive interface with the glycan scaffold linked to Asn330 of NavPas that augments a small protein-protein interface between NavPas and LqhαIT. A combination of molecular dynamics simulations, structural comparisons, and prior mutagenesis experiments demonstrates the functional importance of this toxin-glycan interaction. These findings establish a structural basis for the specificity achieved by scorpion α-toxins and reveal the conserved glycan as an essential component of the toxin-binding epitope.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    遗传性肌痛是一组复杂的疾病,由编码或调节调节肌肉兴奋性的离子通道表达的基因变异引起。这些变化改变肌肉膜兴奋性,允许轻度去极化,引起肌强直放电.有两组遗传性肌强直,营养不良性和非营养不良性肌痛(NDM)。NDM患者具有纯肌肉表型,在肌肉中表达的通道基因存在变异。营养不良性肌张力由改变剪接的基因引起,导致更多的全身性效应,肌张力障碍是许多全身性症状之一。ThischapterthereforefocusesonthekeyaspectsoftheNDMs.TheNDMsmanifestwithvariousclinicalphenotypes,从婴儿期到成年。可以使用异源表达系统来确定不同变体的致病性,以了解通道特性的改变并预测引起疾病的可能性。肌强直本身可以通过改变生活方式来管理。许多随机对照试验证明了美西律和拉莫三嗪治疗肌强直的疗效。但有证据表明,特定的变体可能或多或少被不同的药物治疗,因为它们如何改变通道动力学。需要更多的工作来开发更有针对性的遗传治疗。
    The inherited myotonias are a complex group of diseases caused by variations in genes that encode or modulate the expression of ion channels that regulate muscle excitability. These variations alter muscle membrane excitability allowing mild depolarization, causing myotonic discharges. There are two groups of inherited myotonia, the dystrophic and the nondystrophic myotonias (NDM). Patients with NDM have a pure muscle phenotype with variations in channel genes expressed in muscle. The dystrophic myotonias are caused by genes that alter splicing leading to more systemic effects with myotonia being one of a number of systemic symptoms. This chapter therefore focuses on the key aspects of the NDMs. The NDMs manifest with varying clinical phenotypes, which change from infancy to adulthood. The pathogenicity of different variants can be determined using heterologous expression systems to understand the alteration in channel properties and predict the likelihood of causing disease. Myotonia itself can be managed by lifestyle modifications. A number of randomized controlled trials demonstrate efficacy of mexiletine and lamotrigine in treating myotonia, but there is an evidence that specific variants may be more or less well-treated by the different agents because of how they alter the channel kinetics. More work is needed to develop more targeted genetic treatments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    离子通道是允许离子穿过膜的膜蛋白。它们的特征在于包含确定某些离子种类的选择性的孔,并且发现打开和关闭孔的门。该孔通常与调节其功能的另外的结构域或亚单位相连。根据通道对特定离子的选择性和控制通道打开和关闭的刺激,将通道分为多个家族。如电压或配体。离子通道是可兴奋组织的电特性的基础。通道功能障碍可导致神经元和肌肉细胞的异常电信号,伴有临床表现,被称为沟通病。许多天然存在的毒素靶向离子通道并影响通道表达的可兴奋细胞。此外,离子通道,作为膜蛋白和许多生理功能的关键调节因子,是临床用药的重要靶点。在这一章中,我们给出了分类的总体概述,主要离子通道家族的遗传学和结构-功能特征,并讨论了与神经信道病相关的一些药理学方面。
    Ion channels are membrane proteins that allow the passage of ions across the membrane. They characteristically contain a pore where the selectivity of certain ion species is determined and gates that open and close the pore are found. The pore is often connected to additional domains or subunits that regulate its function. Channels are grouped into families based on their selectivity for specific ions and the stimuli that control channel opening and closing, such as voltage or ligands. Ion channels are fundamental to the electrical properties of excitable tissues. Dysfunction of channels can lead to abnormal electrical signaling of neurons and muscle cells, accompanied by clinical manifestations, known as channelopathies. Many naturally occurring toxins target ion channels and affect excitable cells where the channels are expressed. Furthermore, ion channels, as membrane proteins and key regulators of a number of physiologic functions, are an important target for drugs in clinical use. In this chapter, we give a general overview of the classification, genetics and structure-function features of the main ion channel families, and address some pharmacologic aspects relevant to neurologic channelopathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号