Inversion modelling

  • 文章类型: Journal Article
    中东部沙漠和红海地区已成为地热能勘探的重要领域,由于其独特的地质特征和活跃的构造活动。这项研究旨在通过对重力和磁性数据的综合分析来增强我们对该地区地热潜力的理解。利用三维重力反演模型,进行了地下结构和密度变化的详细检查。同样,采用三维磁反演模型研究地下磁特性。来自Pygimli库的积分结果确保了反演结果的鲁棒性和准确性。此外,使用WINTERC-G模型和反演技术建立了温度模型,对研究区的热结构和潜在异常进行光照。对布格重力图的分析,三维重力反演模型,和磁数据反演产生了重要的发现。与陆上东部沙漠相比,红海表现出更高的重力值,与东部沙漠中密度较低的大陆壳相反,这归因于海洋壳的存在。三维重力反演模型揭示了密度的明显变化,特别是靠近红海表面的高密度地带,指示潜在的地质结构和过程。相反,密度沿岸线随深度逐渐减小,可能受到较高浓度的地壳骨折的影响。磁数据反演技术提供了额外的见解,用消磁材料突出显示区域,表明温度升高。这些发现与高密度区域和低磁化率值之间的相关性一致,加强从红海传热的主张。对温度曲线的比较分析进一步证实了在有希望的区域中存在高温,强调与红海传热相关的地热势。这项研究有助于了解中东部沙漠和红海地区的地热资源。重力和磁数据反演的结果,结合温度曲线,为今后的地热勘探和利用工作提供有价值的信息。调查结果强调了地热能在实现可持续性方面的重要性,并为全球关于可再生能源的讨论做出了贡献。
    The Central Eastern Desert and Red Sea region have emerged as a significant area of interest for geothermal energy exploration, owing to their unique geological characteristics and active tectonic activity. This research aims to enhance our understanding of the region\'s geothermal potential through a comprehensive analysis of gravity and magnetic data. By utilizing a 3D gravity inversion model, a detailed examination of subsurface structures and density variations was conducted. Similarly, a 3D magnetic inversion model was employed to investigate subsurface magnetic properties. Integration result from the Pygimli library ensured robustness and accuracy in the inversion results. Furthermore, a temperature model was developed using the WINTERC-G model and inversion techniques, shedding light on the thermal structure and potential anomalies in the study area. The analysis of the Bouguer gravity map, 3D gravity inversion model, and magnetic data inversion yielded significant findings. The Red Sea exhibited higher gravity values compared to the onshore Eastern Desert, attributed to the presence of a thinner and denser oceanic crust as opposed to the less dense continental crust in the Eastern Desert. The 3D gravity inversion model revealed distinct variations in density, particularly high-density zones near the surface of the Red Sea, indicating underlying geological structures and processes. Conversely, density gradually decreased with depth along the onshore line, potentially influenced by a higher concentration of crustal fractures. The magnetic data inversion technique provided additional insights, highlighting areas with demagnetized materials, indicative of elevated temperatures. These findings were consistent with the correlation between high-density areas and low magnetic susceptibility values, reinforcing the proposition of increased heat transfer from the Red Sea. Comparative analysis of temperature profiles further confirmed the presence of elevated temperatures in promising zones, emphasizing the geothermal potential associated with heat transfer from the Red Sea.This research contributes to the understanding of the geothermal resources in the Central Eastern Desert and Red Sea region. The results from gravity and magnetic data inversions, combined with temperature profiles, provide valuable information for future geothermal exploration and utilization efforts. The findings underscore the importance of geothermal energy in achieving sustainability and contribute to the global discourse on renewable energy sources.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    到2050年实现气候中立需要在减缓气候变化规划和行动方面取得突破性的技术和方法进步,从地方到区域。以足够的细节和准确性监测城市的二氧化碳排放对于指导可持续的城市转型至关重要。目前的CO2排放清单方法依赖于自下而上(BU)方法,这些方法通常不提供有关排放的空间或时间变化的信息,并且存在大量不确定性。本研究开发了一种新颖的方法,该方法从先进的城市BU表面通量模型中吸收了具有非常高的时空分辨率信息的城市涡流协方差(EC)塔的直接CO2通量观测值(本研究的第1部分,Stagakis等人。,2023)在贝叶斯反演框架内。该方法适用于巴塞尔市中心,瑞士(3×3公里域),利用两个相距1.6公里的长期城市EC站点。数据同化分别为每个城市表面通量组件(即建筑物供暖排放,商业/工业排放,交通排放,人体呼吸排放,生物净交换),分辨率为20米,每周时间步长。结果表明,城市EC观测值可以始终如一地用于改进高分辨率BU表面CO2通量模型估计,提供每个通量分量的真实季节性变化。在反演过程中,在五个通量分量中,以最大的置信度确定交通排放。优化的年度人为排放量比先前的估计值低14.7%,人类呼吸排放减少了12.1%,而生物成分则从弱汇转变为弱源。EC观测值和模型输出之间的每周比较的均方根误差(RMSE)持续降低。然而,稍微低估了总流量,尤其是在CO2源/汇混合物复杂的地方,在优化的通量中仍然很明显。
    Achieving climate neutrality by 2050 requires ground-breaking technological and methodological advancements in climate change mitigation planning and actions from local to regional scales. Monitoring the cities\' CO2 emissions with sufficient detail and accuracy is crucial for guiding sustainable urban transformation. Current methodologies for CO2 emission inventories rely on bottom-up (BU) approaches which do not usually offer information on the spatial or temporal variability of the emissions and present substantial uncertainties. This study develops a novel approach which assimilates direct CO2 flux observations from urban eddy covariance (EC) towers with very high spatiotemporal resolution information from an advanced urban BU surface flux model (Part 1 of this study, Stagakis et al., 2023) within a Bayesian inversion framework. The methodology is applied to the city centre of Basel, Switzerland (3 × 3 km domain), taking advantage of two long-term urban EC sites located 1.6 km apart. The data assimilation provides optimised gridded CO2 flux information individually for each urban surface flux component (i.e. building heating emissions, commercial/industrial emissions, traffic emissions, human respiration emissions, biogenic net exchange) at 20 m resolution and weekly time-step. The results demonstrate that urban EC observations can be consistently used to improve high-resolution BU surface CO2 flux model estimations, providing realistic seasonal variabilities of each flux component. Traffic emissions are determined with the greatest confidence among the five flux components during the inversions. The optimised annual anthropogenic emissions are 14.7 % lower than the prior estimate, the human respiration emissions have decreased by 12.1 %, while the biogenic components transformed from a weak sink to a weak source. The root-mean-square errors (RMSEs) of the weekly comparisons between EC observations and model outputs are consistently reduced. However, a slight underestimation of the total flux, especially in locations with complex CO2 source/sink mixture, is still evident in the optimised fluxes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号