Interactive specialization

  • 文章类型: Journal Article
    已经提出了诸如交互式专业化和成熟框架之类的总体理论来描述人类功能性大脑发育。然而,这些框架尚未在fMRI文献中进行系统检查.视觉处理是神经影像学中研究最充分的领域之一,在这一领域的研究最近已经扩展到包括自然主义范式,以促进在年轻年龄范围内的研究,允许在整个童年对这些框架进行深入的批判性评估。为此,我们对94项发育性视觉功能磁共振成像研究进行了范围审查,包括传统的实验任务和自然主义研究,跨多个子域(早期视觉处理,特定类别的高阶处理,自然主义视觉处理)。我们发现跨域,许多研究报告了逐步发展,但是很少有研究描述适应成熟或交互式专业化框架所必需的回归或紧急变化。我们的研究结果表明,需要扩展发展框架,并更清晰地报告渐进和回归变化,随着动力良好,纵向研究。
    Overarching theories such as the interactive specialization and maturational frameworks have been proposed to describe human functional brain development. However, these frameworks have not yet been systematically examined across the fMRI literature. Visual processing is one of the most well-studied fields in neuroimaging, and research in this area has recently expanded to include naturalistic paradigms that facilitate study in younger age ranges, allowing for an in-depth critical appraisal of these frameworks across childhood. To this end, we conducted a scoping review of 94 developmental visual fMRI studies, including both traditional experimental task and naturalistic studies, across multiple sub-domains (early visual processing, category-specific higher order processing, naturalistic visual processing). We found that across domains, many studies reported progressive development, but few studies describe regressive or emergent changes necessary to fit the maturational or interactive specialization frameworks. Our findings suggest a need for the expansion of developmental frameworks and clearer reporting of both progressive and regressive changes, along with well-powered, longitudinal studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Adult ability in complex cognitive domains, including music, is commonly thought of as the product of gene-environment interactions, where genetic predispositions influence and are modulated by experience, resulting in the final phenotypic expression. Recently, however, the important contribution of maturation to gene-environment interactions has become better understood. Thus, the timing of exposure to specific experience, such as music training, has been shown to produce long-term impacts on adult behaviour and the brain. Work from our lab and others shows that musical training before the ages of 7-9 enhances performance on musical tasks and modifies brain structure and function, sometimes in unexpected ways. The goal of this paper is to present current evidence for sensitive period effects for musical training in the context of what is known about brain maturation and to present a framework that integrates genetic, environmental and maturational influences on the development of musical skill. We believe that this framework can also be applied more broadly to understanding how predispositions, brain development and experience interact.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Mathematical ability, especially perception of numbers and performance of arithmetics, is known to rely on the activation of intraparietal sulcus (IPS). However, reasoning ability and working memory, 2 highly associated abilities also activate partly overlapping regions. Most studies aimed at localizing mathematical function have used group averages, where individual variability is averaged out, thus confounding the anatomical specificity when localizing cognitive functions. Here, we analyze the functional anatomy of the intraparietal cortex by using individual analysis of subregions of IPS based on how they are structurally connected to frontal, parietal, and occipital cortex. Analysis of cortical thickness showed that the right anterior IPS, defined by its connections to the frontal lobe, was associated with both visuospatial working memory, and mathematics in 6-year-old children. This region specialized during development to be specifically related to mathematics, but not visuospatial working memory in adolescents and adults. This could be an example of interactive specialization, where interacting with the environment in combination with interactions between cortical regions leads from a more general role of right anterior IPS in spatial processing, to a specialization of this region for mathematics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Extant neurobiological theories of dyslexia appear fractional in focusing on isolated brain regions, mechanisms, and functional pathways. A synthesis of current research shows support for an Interactive Specialization (IS) model of dyslexia involving the dysfunctional orchestration of a widely-distributed, attentionally-controlled, hierarchical, and interhemispheric circuit of intercommunicating neuronal networks. This circuitry is comprised principally of the frontostriatal-parietal cognitive control system of networks, the posterior corpus callosum, and the left arcuate fasciculus. During development, the coalescence of these functionally specialized regions, acting together, may be essential to preventing the core phonemic and phonological processing deficits defining the dyslexic phenotype. Research demonstrating an association of each with processing phonology presents the foundational outline for a comprehensive, integrative theory of dyslexia and suggests the importance of inclusive remedial efforts aimed at promoting interactions among all three networking territories.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4- and 6-year-old children (n=40). Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4) regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Between 6 and 12 months, typically developing infants undergo a socio-cognitive \"revolution.\" The Interactive Specialization (IS) theory of brain development predicts that these behavioral changes will be underpinned by developmental increases in the power and topographic extent of socially selective cortical responses. To test this hypothesis, we used EEG to examine developmental changes in cortical selectivity for ecologically valid dynamic social versus non-social stimuli in a large cohort of 6- and 12-month-old infants. Consistent with the Interactive Specialization model, results showed that differences in EEG Θ activity between social and non-social stimuli became more pronounced and widespread with age. Differences in EEG activity were most clearly elicited by a live naturalistic interaction, suggesting that measuring brain activity in ecologically valid contexts is central to mapping social brain development in infancy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号