In Situ Visualization

  • 文章类型: Journal Article
    内生真菌Serendipitaindea可以促进植物生长,并赋予其对各种生物和非生物胁迫的保护作用。然而,在亚微米尺度上,美国重新塑造的根际微生态相互作用和根-土壤界面过程仍然知之甚少。我们将扩增子测序和根-土壤界面的高分辨率纳米X射线荧光(nano-XRF)成像相结合,以揭示镉(Cd)根际过程。S.indica可以成功地殖民SedumalfrediiHance的根,导致芽生物量显着增加211.32%,Cd积累量增加235.72%。Nano-XRF图像显示,in子定植改变了根际中Cd的分布,并促进了更多Cd和硫(S)的接近,以进入根部并运输到芽。此外,接种后,富含根际的微生物群表现出更稳定的网络结构。Keystone种与生长促进和Cd吸收密切相关。例如,Com科植物与有机酸循环和S生物利用度密切相关,可以促进Cd和S在植物体内的积累。同时,Sphingomonadaceae可以释放生长素并提高植物生物量。总之,我们为有益真菌和超积累植物构建了一个共生系统,通过重组根际微生物区来促进Cd污染土壤的高效修复。
    Endophytic fungus Serendipita indica can bolster plant growth and confer protection against various biotic and abiotic stresses. However, S. indica-reshaped rhizosphere microecology interactions and root-soil interface processes in situ at the submicrometer scale remain poorly understood. We combined amplicon sequencing and high-resolution nano X-ray fluorescence (nano-XRF) imaging of the root-soil interface to reveal cadmium (Cd) rhizosphere processes. S. indica can successfully colonize the roots of Sedum alfredii Hance, which induces a remarkable increase in shoot biomass by 211.32% and Cd accumulation by 235.72%. Nano-XRF images showed that S. indica colonization altered the Cd distribution in the rhizosphere and facilitated the proximity of more Cd and sulfur (S) to enter the roots and transport to the shoot. Furthermore, the rhizosphere-enriched microbiota demonstrated a more stable network structure after the S. indica inoculation. Keystone species were strongly associated with growth promotion and Cd absorption. For example, Comamonadaceae are closely related to the organic acid cycle and S bioavailability, which could facilitate Cd and S accumulation in plants. Meanwhile, Sphingomonadaceae could release auxin and boost plant biomass. In summary, we construct a mutualism system for beneficial fungi and hyperaccumulation plants, which facilitates high-efficient remediation of Cd-contaminated soils by restructuring the rhizosphere microbiota.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    水性可充电电池被认为是电化学储能最可靠的解决方案之一,和离子(例如,H+或OH-)传输对其电化学性能至关重要。然而,由于模型假设与现实的偏差,建模和数值模拟通常无法描述实际的离子传输特性。实验方法,包括激光干涉测量,拉曼,核磁共振成像,受到系统复杂性和离子检测受限的限制,这使得很难检测特定的离子,如H+和OH-。在这里,通过创新性地引入激光扫描共聚焦显微镜,实现了离子传输的原位可视化。以中性锌空气电池为例,使用pH敏感探针,在电池运行过程中观察到与离子迁移过程相关的实时动态pH变化。结果表明,在硫酸锌电解液中浸泡后,Zn电极附近的pH值显着变化,发生脉动,这表明了强烈的自腐蚀析氢反应和反应强度的周期性变化。相比之下,镀锌电极板的pH变化较弱,证明了其显著的缓蚀效果。对于空气电极,提出了放电和充电过程中离子传输的异质性。随着电流密度的增加,离子输运特性从扩散优势逐渐演变为对流-扩散优势,揭示了对流在电池内部离子传输过程中的重要性。这种方法开辟了一种研究电池内部离子传输的新方法,指导性能增强的设计。
    Aqueous rechargeable batteries are regarded as one of the most reliable solutions for electrochemical energy storage, and ion (e.g., H+ or OH-) transport is essential for their electrochemical performance. However, modeling and numerical simulations often fall short of depicting the actual ion transport characteristics due to deviations in model assumptions from reality. Experimental methods, including laser interferometry, Raman, and nuclear magnetic resonance imaging, are limited by the complexity of the system and the restricted detection of ions, making it difficult to detect specific ions such as H+ and OH-. Herein, in situ visualization of ion transport is achieved by innovatively introducing laser scanning confocal microscopy. Taking neutral Zn-air batteries as an example and using a pH-sensitive probe, real-time dynamic pH changes associated with ion transport processes are observed during battery operation. The results show that after immersion in the zinc sulfate electrolyte, the pH near the Zn electrode changes significantly and pulsation occurs, which demonstrates the intense self-corrosion hydrogen evolution reaction and the periodic change in the reaction intensity. In contrast, the change in the pH of the galvanized electrode plate is weak, proving its significant corrosion inhibition effect. For the air electrode, the heterogeneity of ion transport during the discharging and charging process is presented. With an increase of the current density, the ion transport characteristics gradually evolve from diffusion dominance to convection-diffusion codominance, revealing the importance of convection in the ion transport process inside batteries. This method opens up a new approach of studying ion transport inside batteries, guiding the design for performance enhancement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    潜在指纹(LFPs)的荧光传感因其高灵敏度而受到广泛关注,无损检测,低生物毒性,操作方便,以及原位可视化的潜力。然而,实现LFP的原位可视化,特别是具有绿色排放和快速速度的LFP仍然是一个挑战。在这里,我们合成了两栖绿色发射AIE-genTPE-NI-AOH(PLQY=62%)用于即时原位LFP检测,它集成了具有亲水头的萘酰亚胺(NI)的优异荧光特性和AIE特性以及四苯基乙烯(TPE)的供体特性。将乙醇/水二元溶剂中的TPE-NI-AOH用作环保的LFP显影剂,并实现了LFP的原位绿色荧光可视化。荧光信号在0.37s内达到60%饱和强度,在2.50s内达到近100%,这对肉眼来说是一个即时的过程。此外,可以清楚地观察到LFP的3级细节和超分辨率图像。此外,TPE-NI-AOH开发人员可以保存至少6个月,适合长期储存。这种即时原位突出显示方法不需要后处理操作,提供更方便的,快速,LFP的高效检测方法。这项工作将激发用于指纹成像的荧光传感器的进一步发展。
    Fluorescence sensing of latent fingerprints (LFPs) has gained extensive attention due to its high sensitivity, non-destructive testing, low biotoxicity, ease of operation, and the potential for in situ visualization. However, the realization of in situ visualization of LFPs especially with green emission and rapid speed is still a challenge. Herein, we synthesized an amphibious green-emission AIE-gen TPE-NI-AOH (PLQY = 62%) for instant in situ LFP detecting, which integrates the excellent fluorescence properties of naphthalimide (NI) with a hydrophilic head and the AIE character as well as the donating property of tetraphenylethene (TPE). TPE-NI-AOH in ethanol/water binary solvent was used as an environmentally friendly LFP developer and achieved in situ green-fluorescence visualization of LFPs. The fluorescence signal achieves its 60% saturated intensity in 0.37 s and nearly 100% in 2.50 s, which is an instant process for the naked eye. Moreover, level 3 details and super-resolution images of LFPs could be observed clearly. Besides, the TPE-NI-AOH developer could be stored for at least 6 months, suitable for long-term storage. This instant in situ highlighting method does not require post-processing operations, providing a more convenient, rapid, and efficient detection method of LFPs. This work would inspire the further advancement of fluorescent sensors for fingerprint imaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    构建室温磷光(RTP)材料的一般方法包括将磷光发射体结合到具有高玻璃化转变温度的刚性主体或聚合物中。然而,这些材料通常具有较差的加工性能和次优的机械性能,限制其实际应用。在这项工作中,我们开发了基于苯并噻二唑的二烯烃(BTD-HEA),一种多功能磷光发射体,具有显著的系统间交叉产量(ΦISC,99.83%)。其高的三重态激子生成能力和二烯烃结构使BTD-HEA能够作为光引发剂和交联剂,在120秒内有效地引发各种单体的聚合。一系列柔性磷光凝胶,包括水凝胶,有机凝胶,离子凝胶,制造气凝胶,表现出突出的拉伸性和可恢复性。此外,凝胶独特的荧光-磷光比色特性为目视测定聚合过程提供了更灵敏的方法。值得注意的是,水凝胶的磷光发射强度可以通过冰的形成来增加,允许水凝胶冷冻的精确检测。这种发射器的多功能性为使用微流体制造具有不同形态的各种柔性磷光凝胶铺平了道路,薄膜剪切,辊涂工艺,和二维/三维打印,展示了其在生物成像和生物工程领域的潜在应用。
    A general approach to constructing room temperature phosphorescence (RTP) materials involves the incorporation of a phosphorescent emitter into a rigid host or polymers with high glass transition temperature. However, these materials often suffer from poor processability and suboptimal mechanical properties, limiting their practical applications. In this work, we developed benzothiadiazole-based dialkene (BTD-HEA), a multifunctional phosphorescent emitter with a remarkable yield of intersystem crossing (ΦISC, 99.83 %). Its high triplet exciton generation ability and dialkene structure enable BTD-HEA to act as a photoinitiator and crosslinker, efficiently initiating the polymerization of various monomers within 120 seconds. A range of flexible phosphorescence gels, including hydrogels, organogels, ionogels, and aerogels were fabricated, which exhibit outstanding stretchability and recoverability. Furthermore, the unique fluorescent-phosphorescent colorimetric properties of the gels provide a more sensitive method for the visual determination of the polymerization process. Notably, the phosphorescent emission intensity of the hydrogel can be increased by the formation of ice, allowing for the precise detection of hydrogel freezing. The versatility of this emitter paves the way for fabricating various flexible phosphorescence gels with diverse morphologies using microfluidics, film-shearing, roll coating process, and two/three-dimensional printing, showcasing its potential applications in the fields of bioimaging and bioengineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    锂-二氧化碳(Li-CO2)电池技术为碳捕获和能量存储提供了有希望的机会。尽管在Li-CO2电池方面付出了巨大努力,复杂的电极/电解质/CO2三相界面过程仍然知之甚少,特别是在纳米级。这里,使用原位原子力显微镜和激光共聚焦显微镜-微分干涉对比显微镜,我们在纳米尺度上直接观察了Li-CO2电池中的CO2转化过程,并根据实时观察进一步揭示了激光调谐反应途径。放电期间,双组分复合材料,Li2CO3/C,通过3D渐进生长模型沉积为微米大小的簇,在随后的再充电过程中,然后是3D分解路径。当细胞在激光(λ=405nm)照射下工作时,密集堆积的Li2CO3/C薄片在放电过程中迅速沉积。充电后,它们主要在薄片和电极的界面处分解,将自身从电极分离并导致不可逆的容量退化。原位拉曼表明,激光促进了难溶性中间体的形成,Li2C2O4,进而影响Li2CO3/C的生长/分解途径和电池性能。我们的发现为Li-CO2电池中的界面演化和激光调谐的CO2转化反应提供了机械见解。这可以激发在先进的电化学装置中监测和控制多步和多相界面反应的策略。
    Lithium-carbon dioxide (Li-CO2 ) battery technology presents a promising opportunity for carbon capture and energy storage. Despite tremendous efforts in Li-CO2 batteries, the complex electrode/electrolyte/CO2 triple-phase interfacial processes remain poorly understood, in particular at the nanoscale. Here, using in situ atomic force microscopy and laser confocal microscopy-differential interference contrast microscopy, we directly observed the CO2 conversion processes in Li-CO2 batteries at the nanoscale, and further revealed a laser-tuned reaction pathway based on the real-time observations. During discharge, a bi-component composite, Li2 CO3 /C, deposits as micron-sized clusters through a 3D progressive growth model, followed by a 3D decomposition pathway during the subsequent recharge. When the cell operates under laser (λ=405 nm) irradiation, densely packed Li2 CO3 /C flakes deposit rapidly during discharge. Upon the recharge, they predominantly decompose at the interfaces of the flake and electrode, detaching themselves from the electrode and causing irreversible capacity degradation. In situ Raman shows that the laser promotes the formation of poorly soluble intermediates, Li2 C2 O4 , which in turn affects growth/decomposition pathways of Li2 CO3 /C and the cell performance. Our findings provide mechanistic insights into interfacial evolution in Li-CO2 batteries and the laser-tuned CO2 conversion reactions, which can inspire strategies of monitoring and controlling the multistep and multiphase interfacial reactions in advanced electrochemical devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    卟啉是一种有前途的生物活性多糖,主要由4连接的α-1-吡喃半乳糖-6-硫酸酯(L6S)和3连接的β-d-吡喃半乳糖(G)二糖重复单元组成。碳水化合物结合模块(CBMs)已被证实是研究多糖的重要工具。然而,迄今尚无证实的CBM与卟啉结合的报道。在这项研究中,发现了一个未知的域,该域具有潜在的GH86卟啉酶的预测β-三明治折叠,并进一步重组表达。CBM蛋白(命名为FvCBMxx)对卟啉四糖具有所需的特异性,亲和常数为1.9×10-4M,而不能与琼脂糖四糖结合。FvCBMxx及其同源物的序列新颖性和明确的功能揭示了一个新的CBM家族。此外,证明了FvCBMxx在卟啉原位可视化中的应用潜力。FvCBMxx的发现为未来卟啉的研究提供了有利的工具。
    Porphyran is a promising bioactive polysaccharide majorly composed of 4-linked α-l-galactopyranose-6-sulfate (L6S) and 3-linked β-d-galactopyranose (G) disaccharide repeating units. Carbohydrate-binding modules (CBMs) have been verified to be essential tools for investigating polysaccharides. However, no confirmed CBM binding to porphyran has been hitherto reported. In this study, an unknown domain with a predicted β-sandwich fold from a potential GH86 porphyranase was discovered, and further recombinantly expressed. The CBM protein (named FvCBM99) presented a desired specificity for porphyran tetrasaccharide with an affinity constant of 1.9 × 10-4 M, while it could not bind to agarose tetrasaccharide. The sequence novelty and well-defined function of FvCBM99 and its homologs reveal a new CBM family, CBM99. Besides, the application potential of FvCBM99 in in situ visualization of porphyran was demonstrated. The discovery of FvCBM99 provides a favorable tool for future studies of porphyran.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物膜是由自身产生的细胞外基质保持在一起的多细胞群落,并表现出一系列将它们与自由生活的细菌区分开的特性。生物膜暴露于由流体运动和质量传输产生的各种机械和化学线索。微流体提供了流体动力学和物理化学微环境的精确控制,以研究一般的生物膜。在这次审查中,我们总结了基于微流体的生物膜研究的最新进展,包括了解细菌粘附和生物膜发育的机制,防污和抗菌性能的评估,先进的体外感染模型的发展,以及表征生物膜的方法的进步。最后,我们对微流体辅助生物膜研究的未来方向提供了展望。
    Biofilms are multicellular communities held together by a self-produced extracellular matrix and exhibit a set of properties that distinguish them from free-living bacteria. Biofilms are exposed to a variety of mechanical and chemical cues resulting from fluid motion and mass transport. Microfluidics provides the precise control of hydrodynamic and physicochemical microenvironments to study biofilms in general. In this review, we summarize the recent progress made in microfluidics-based biofilm research, including understanding the mechanism of bacterial adhesion and biofilm development, assessment of antifouling and antimicrobial properties, development of advanced in vitro infection models, and advancement in methods to characterize biofilms. Finally, we provide a perspective on the future direction of microfluidics-assisted biofilm research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    药理学的研究通常集中在药物的构效关系,比如抗生素,为了加强他们的活动,但经常忽略它们的光学特性。然而,研究药物的光物理性质具有重要意义,因为它们可以用来原位可视化它们的位置,并帮助我们了解它们的工作代谢。在这项工作中,我们确定了一类商业化的抗生素,比如左氧氟沙星,诺氟沙星,和莫西沙星(MXF)盐酸盐,具有独特的聚集诱导发射(AIE)特性。通过利用他们的AIE功能,细胞中的抗生素代谢可以原位可视化,这清楚地表明发光聚集体在溶酶体中积累。此外,经过结构-活动关系研究,我们发现了一个理想的MXF位点被三苯基鳞修饰,并制备了抗生素衍生物MXF-P,它能够在仅10分钟的处理后特异性区分细菌种类。此外,MXF-P具有高效的广谱抗菌活性,对金黄色葡萄球菌感染的伤口恢复具有优异的治疗效果和生物安全性。因此,这项工作不仅发现了抗生素的多功能性,而且为使商业化药物更强大提供了可行的策略。
    The research on pharmacology usually focuses on the structure-activity relationships of drugs, such as antibiotics, to enhance their activity, but often ignores their optical properties. However, investigating the photophysical properties of drugs is of great significance because they could be used to in situ visualize their positions and help us to understand their working metabolism. In this work, we identified a class of commercialized antibiotics, such as levofloxacin, norfloxacin, and moxifloxacin (MXF) hydrochloride, featuring the unique aggregation-induced emission (AIE) characteristics. By taking advantage of their AIE feature, antibiotic metabolism in cells could be in situ visualized, which clearly shows that the luminescent aggregates accumulate in the lysosomes. Moreover, after a structure-activity relationship study, we found an ideal site of MXF to be modified with a triphenylphosphonium and an antibiotic derivative MXF-P was prepared, which is able to specifically differentiate bacterial species after only 10 min of treatment. Moreover, MXF-P shows highly effective broad-spectrum antibacterial activity, excellent therapeutic effects and biosafety for S. aureus-infected wound recovery. Thus, this work not only discovers the multifunctionalities of the antibiotics but also provides a feasible strategy to make the commercialized drugs more powerful.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    近年来,柔性电致变色器件因其在智能多功能电致变色储能器件和可穿戴智能电子产品中的巨大潜力而受到广泛关注。在这里,通过结合普鲁士白色@MnO2复合电极(PWM)和溅射制成的WO3电极,我们提出了一种无机柔性Li基电致变色储能器件(EESD)。普鲁士白和MnO2的协同作用对EESD的储能和电致变色性能均有积极作用。其能级可以通过透射光谱和色度差来量化,其充放电过程可以通过特殊波长的光调制实时监测。具体来说,EESD可以承受10,000次循环伏安循环,在宽电压窗口(-2至2.5V)下没有明显降解,并在510nm处具有35%的光学调制实现了高着色效率(77.6cm2/C)。在储能性能方面,EESD表现出优异的体积能量/功率密度(1.25Wcm-3/13.2mWhcm-3)和显著的稳定性,在超过4000次循环后具有接近98.3%的电容保持率和99.4%的库仑效率。可以在不同的光谱区域中可视化其充电和放电程度。对于在蓝光区域(450-480nm)中的充电,存在40%的透射率变化,对于在红光区域(620-750nm)中的放电,存在45%的透射率变化。基于它的多色属性,电荷状态的定量指标是通过存储或释放电荷时实时色度变化的线性依赖性来实现的。~11mC/cm2存储的电荷容量可以导致色度差ΔE值增加~11,而~7mC/cm2放电容量可导致ΔE值增加~4。这项工作提供了一种有效的策略来开发便携式多色集成EESD,以实现高性能和长稳定性。
    Flexible electrochromic devices have attracted considerable attention in recent years due to their great potential in smart multifunction electrochromic energy storage devices and wearable intelligent electronics. Herein, we present an inorganic flexible Li-based electrochromic energy storage device (EESD) by combining a Prussian white@MnO2-composited electrode (PWM) and sputtering-made WO3 electrode. The synergistic effect of Prussian white and MnO2 plays a positive role both in energy storage and electrochromic property of the EESD. Its energy level can be quantified by the transmittance spectrum and chrominance difference, and its charging-discharging process can be monitored in real time by optical modulation at special wavelength. Specifically, the EESD can endure a 10,000 times cyclic voltammetry cycle without obvious degradation at wide voltage windows (-2 to 2.5 V) and realize a high coloration efficiency (77.6 cm2/C) with 35% optical modulation at 510 nm. In terms of energy storage performance, the EESD demonstrates excellent volumetric energy/power density (1.25 W cm-3/13.2 mWh cm-3) and remarkable stability with close to 98.3% capacitance retention and 99.4% coulombic efficiency after more than 4000 cycles. Its charging and discharging degree can be visualized in different spectral regions. There are 40% transmittance change for charging in the blue light region (450-480 nm) and 45% transmittance change for discharging in the red light region (620-750 nm). Based on its multicolor property, a quantitative indicator of charge state is achieved by the linear dependence of real-time chrominance change as stored or released charge. The ∼11 mC/cm2 stored charge capacity can cause an ∼11 increase in chrominance difference ΔE value, while ∼7 mC/cm2 discharge capacity can cause a ΔE value increase of ∼4. This work provides an efficient strategy to develop portable multicolor-integrated EESDs toward high performance and long stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    粒子内离子运动对纳米材料的结构和性能至关重要,但很少透露。在这里,通过暗场显微镜成像呈现单个纳米粒子中离子运动的原位可视化,这表明HgCl2诱导的以Se8为主要成分的无定形硒纳米颗粒(SeNPs)的结构转变。由于与硒和库仑相互作用的高结合亲和力,Hg2+离子可以渗透到SeNPs的内部,使无定形Se8转变为多晶Hg3Se2Cl2。作为概念的证明,然后,SeNP用作从溶液中选择性去除Hg2+离子的高效清除剂。这项新发现为涉及粒子内离子运动的光物理过程提供了视觉证据,证明跟踪离子运动是一种理解形成机制的新策略,目的是开发新的纳米结构,如纳米合金和纳米金属化合物。
    Intraparticle ion motions are critical to the structure and properties of nanomaterials, but rarely disclosed. Herein, in situ visualization of ion motions in a single nanoparticle is presented by dark-field microscopy imaging, which shows HgCl2 -induced structural transformation of amorphous selenium nanoparticles (SeNPs) with the main composition of Se8 . Owing to the high binding affinity with selenium and coulomb interactions, Hg2+ ions can permeate into the interior of SeNPs, making the amorphous Se8 turn to polycrystalline Hg3 Se2 Cl2 . As a proof of concept, SeNPs then serve as a highly effective scavenger for selective removal of Hg2+ ions from solution. This new finding offers visual proof for the photophysical process involving intraparticle ion motion, demonstrating that tracking the ion motions is a novel strategy to comprehend the formation mechanism with the purpose of developing new nanostructures like nanoalloys and nano metal compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号