Human retinal microvascular endothelial cell

  • 文章类型: Randomized Controlled Trial
    Vasohibin-2(VASH2)被证实与血管生成相关。探讨VASH2在增生性糖尿病视网膜病变(PDR)中的玻璃体水平及VASH2诱导血管生成的作用,这项前瞻性随机对照研究共纳入120只眼,通过Luminex液体悬浮芯片对玻璃体VASH2水平进行了定量.载体系统应用于人视网膜微血管内皮细胞(HRMEC)中VASH2基因过表达,以及用于VASH2基因沉默的干扰慢病毒载体(VASH2-shRNA)。细胞迁移,自噬通量,以及α-微管蛋白的表达,去酪氨酸化^-微管蛋白,LC3II/LC3I,在正常情况下检测到P62,VASH2过表达,或干扰条件。PDR患者的VASH2水平(218.61±30.14pg/ml)明显高于ERM/MH患者(80.78±2.05pg/ml)(P=0.001)。VASH2过表达组HRMECs的迁移能力显著增强,在干扰组中,迁移能力下降。VASH2增加了α-微管蛋白的去酪氨酸作用。高荧光强度的自噬通量在VASH2过表达组显示自噬激活,LC3II/LC3I比值的增加和P62的降低也证实了这一点。总的来说,本研究在PDR中显示,VASH2的玻璃体水平较高。VASH2通过诱导自噬促进新生血管,提示VASH2可能是PDR新的抗血管生成药物靶点。
    Vasohibin-2 (VASH2) is confirmed to be associated with angiogenesis. To investigate the vitreous levels of VASH2 and how VASH2 induces angiogenesis in proliferative diabetic retinopathy (PDR), a total of 120 eyes were enrolled in this prospective and randomized controlled study and the vitreous level of VASH2 was quantified by Luminex liquid suspension chip. Vector systems were applied in human retinal microvascular endothelial cells (HRMECs) for VASH2 gene overexpression, along with interfering lentiviral vectors (VASH2-shRNA) for VASH2 gene silencing. Cell migration, autophagic flux, as well as the expression of α-tubulin, detyrosinated ⍺-tubulin, LC3 II/LC3 I, P62 were detected under normal, VASH2 overexpression, or interference conditions. The level of VASH2 in PDR patients was significantly higher (218.61 ± 30.14 pg/ml) than that in ERM/MH patients (80.78 ± 2.05 pg/ml) (P = 0.001). The migration ability of HRMECs was significantly increased in VASH2 overexpression group, while in the interfering group, the migration ability decreased. VASH2 increased the detyrosination of ⍺-tubulin. The high fluorescence intensity of autophagic flux showed an activation of autophagy in VASH2 overexpression group, which was also confirmed by the increase of LC3 II/LC3 I ratio and the decrease of P62. Collectively, the present study shows in PDR, vitreous level of VASH2 is higher. VASH2 promotes neovascularization by inducing autophagy, suggesting VASH2 could be a new anti-angiogenic drug target for PDR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Since microRNAs (miRNAs) represent as effective therapeutic targets for diabetic retinopathy (DR), we identified aberrantly expressed miRNAs related to cellular dysfunction in DR and further detected their potential targets. This study aimed to explore the synergistic effect of miR-216a, inducible nitric oxide synthase 2 (NOS2) and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway on human retinal microvascular endothelial cell (HRMEC) injury in DR.
    The differentially expressed genes in DR were obtained by GEO database, and the downstream signaling pathways and upstream targeted miRNAs were obtained through bioinformatics analysis. Subsequently, a DR model rat was established, and the target miR-216a was overexpressed to observe the pathological and morphological changes of the rat retina and the levels of inflammatory factors. Then, HRMECs were extracted and added with d-Glucose, and then transfected with miR-216a, NOS2 or adding JAK/STAT signaling pathway specific inhibitor to observe changes in cell activity and inflammatory damage.
    NOS2 was significantly upregulated, and the JAK/STAT signaling pathway was significantly activated in DR. miR-216a targeted NOS2, which played a protective role in the retina of DR rats. Moreover, in cell experiments, overexpression of miR-216a promoted the viability of HRMECs under d-glucose treatment, and inhibited NOS2 expression and the JAK/STAT signaling pathway activation.
    This study suggests that miR-216a protects against HRMECs injury in DR by suppressing the NOS2/JAK/STAT axis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    BACKGROUND: Diabetic retinopathy (DR) is a main complication of diabetes mellitus (DM). Recent studies have implicated microRNAs in human retinal microvascular endothelial cell (HRMEC) dysfunction. In this study, we aim to investigate the apoptotic promotion of miR-29b-3p by blocking SIRT1 in HRMEC for DR situation.
    METHODS: Blood samples were obtained from DR patients and controls. Dual-luciferase reporter assay using HEK-293T cells was performed to show the direct interaction of miR-29b-3p and the 3\'UTR of SIRT1. HRMECs were exposed to 5.5 mmol/L of glucose (normal control), 5.5 mmol/L of glucose and 24.5 mmol/L of mannitol (osmotic pressure control), 30 mmol/L of glucose [hyperglycemia (HG)], 150 μmol/L of CoCl2 (hypoxia), and 30 mmol/L of glucose plus 150 μmol/L of CoCl2 (HG-CoCl2). To identify the regulating relationship between miR-29b-3p and SIRT1, HRMECs were transfected with miR-29b-3p mimics/inhibitors or their negative controls. SRT1720 was used as a SIRT1 agonist. Cell viability was assessed with the cell counting kit-8 (CCK-8) assay, and apoptotic cells were stained by one-step terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay kit. Gene and protein expression were assayed by quantitative real-time reverse transcriptase-PCR (RT-qPCR) and western blotting separately.
    RESULTS: MiR-29b-3p was upregulated to 3.2-fold, and SIRT1 protein was downregulated to 65% in DR patients. Dual-luciferase reporter assay showed the direct interaction of miR-29b-3p and SIRT1. HRMECs were identified as >95% positive for CD31 and von Willebrand factor (vWF). MiR-29b-3p and Bax/Bcl-2 ratio was upregulated, whereas SIRT1 was downregulated in HRMECs in the HG-CoCl2 condition. Decreased cell viability and upregulated apoptosis were also found in HRMECs of the HG-CoCl2 condition. Upregulated miR-29b-3p decreased the expression of SIRT1 and increased the ratio of Bax/Bcl-2, whereas downregulated miR-29b-3p increased the expression of SIRT1 protein and downregulated the ratio of Bax/Bcl-2. SRT1720 rescued miR-29b-3p-induced HRMEC apoptosis via upregulating the expression of SIRT1 protein.
    CONCLUSIONS: The dysregulation of miR-29b-3p/SIRT1 is a potential mechanism of HRMEC apoptosis in DR. MiR-29b-3p/SIRT1 may be a potential therapeutic target for DR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    OBJECTIVE: Proliferative diabetic retinopathy (PDR), characterized by angiogenesis, can cause serve vision loss and even blindness. Recent studies have suggested a pivotal role of vasohibin-2 (VASH2) in the promotion of angiogenesis in tumor tissues. Here we further investigated the role of VASH2 in the proliferation and migration of retinal endothelial cells.
    METHODS: The expression of VASH2 in vascular endothelial cells of epiretinal fibrovascular membranes (FVMs) from PDR patients were detected by immunofluorescence. VASH2 gene interfering lentiviral vectors (VASH2-shRNA) and miR-200b/c were constructed for the evaluation of the VASH2 effect on high glucose induced human retinal microvascular endothelial cell line (HRMECs). Cell proliferation, cell cycle and cell migration were carried out subsequently. The relationship between VASH2 and miR-200b/c was determined by luciferase reporter gene assays.
    RESULTS: A positive expression of VASH2 was identified in vascular endothelial cells of FVMs from PDR patients. In HRMECs, cells transfected with shRNA or miR-200b/c mimics showed a significantly reduced VASH2 expression compared with negative control group by real time-polymerase chain reaction and western-blot analysis. Inhibition of VASH2 was demonstrated to suppress cell proliferation and migration from Day 2 to Day 4. The luciferase reporter gene assays confirmed the post-transcriptional regulation of VASH2 by miR-200b/c in HRMECs.
    CONCLUSIONS: The present study suggests a protective effect of miR-200b/c on high glucose induced HRMECs dysfunction by inhibiting VASH2. It could be a potential therapeutic strategy to inhibit angiogenesis for the treatment of retinal vascular disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Sterile alpha motif domain-containing 11 (SAMD11) is evolutionarily conserved from zebrafish to human. Mouse Samd11 is predominantly expressed in developing retinal photoreceptors and the adult pineal gland, and its transcription is directly regulated by the cone-rod homeodomain protein Crx. However, there has been little research on human SAMD11. To investigate the function of human SAMD11, we first cloned its coding sequence (CDS) and identified up to 45 novel alternative splice variants (ASVs). Mouse Samd11 ASVs were also identified by aligning the mouse Samd11 expressed sequence tags (ESTs) with the annotated sequence. However, the range of expression and transcriptional regulation of SAMD11 differs between human and mouse. Human SAMD11 was found to be widely expressed in many cell lines and ocular tissues and its transcription was not regulated by CRX, OTX2 or NR2E3 proteins. Furthermore, functional analysis indicated that human SAMD11 could promote cell proliferation slightly. In conclusion, this study elucidated the basic characteristics of human SAMD11 and revealed that, although the occurrence of alternative splicing of SAMD11 was conserved, the function of SAMD11 may vary in different species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号