Hox transcription factors

Hox 转录因子
  • 文章类型: Journal Article
    房间隔缺损的临床表现和处理的相对简单性掩盖了发育发病机理的复杂性。这里,我们描述了房间隔的解剖发育和静脉回流到心房腔。实验模型表明,突变和自然发生的遗传变异如何影响发育步骤,从而导致椭圆形窝内的缺陷,所谓的secundum缺陷,或其他心房通信,如静脉窦缺损或原孔缺损。
    The relative simplicity of the clinical presentation and management of an atrial septal defect belies the complexity of the developmental pathogenesis. Here, we describe the anatomic development of the atrial septum and the venous return to the atrial chambers. Experimental models suggest how mutations and naturally occurring genetic variation could affect developmental steps to cause a defect within the oval fossa, the so-called secundum defect, or other interatrial communications, such as the sinus venosus defect or ostium primum defect.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在约24%的人蛋白质中发现了同聚氨基酸重复序列,并且在转录因子和激酶中过度存在。虽然相对罕见,同聚组氨酸重复序列(polyH)在参与胚胎发育调节的蛋白质中更为明显。为了更好地了解polyH在这些蛋白质中的作用,我们使用生物信息学方法来搜索人类含polyH蛋白的相互作用体中的共同特征。我们的分析显示,polyH蛋白的相互作用区富含富含半胱氨酸的蛋白质和含有(a)半胱氨酸重复的蛋白质。聚焦于HOXA1,一种显示一个长polyH基序的HOX转录因子,我们确定,polyH基序是HOXA1与富含半胱氨酸的蛋白质相互作用所必需的。我们观察到polyH重复序列的长度与HOXA1与一种富含Cys的蛋白质相互作用的强度之间存在相关性,MDFI。我们还发现金属离子螯合剂破坏HOXA1-MDFI相互作用,支持这种金属离子是相互作用所必需的。此外,我们确定了三种下调HOXA1转录活性的polyH相互作用子。一起来看,我们的数据指向polyH和半胱氨酸参与蛋白质之间的调节相互作用,特别是转录因子如HOXA1。
    Homopolymeric amino acid repeats are found in about 24 % of human proteins and are over-represented in transcriptions factors and kinases. Although relatively rare, homopolymeric histidine repeats (polyH) are more significantly found in proteins involved in the regulation of embryonic development. To gain a better understanding of the role of polyH in these proteins, we used a bioinformatic approach to search for shared features in the interactomes of polyH-containing proteins in human. Our analysis revealed that polyH protein interactomes are enriched in cysteine-rich proteins and in proteins containing (a) cysteine repeat(s). Focusing on HOXA1, a HOX transcription factor displaying one long polyH motif, we identified that the polyH motif is required for the HOXA1 interaction with such cysteine-rich proteins. We observed a correlation between the length of the polyH repeat and the strength of the HOXA1 interaction with one Cys-rich protein, MDFI. We also found that metal ion chelators disrupt the HOXA1-MDFI interaction supporting that such metal ions are required for the interaction. Furthermore, we identified three polyH interactors which down-regulate the transcriptional activity of HOXA1. Taken together, our data point towards the involvement of polyH and cysteines in regulatory interactions between proteins, notably transcription factors like HOXA1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经系统来自一系列遗传程序,这些程序产生了一系列非凡的神经元细胞类型。每种细胞类型必须获得不同的解剖位置,形态学,和功能,能够产生驱动动物行为的专门电路。这些不同的细胞类型和回路是如何沿着动物体的前后(A-P)轴图案化的?Hox基因编码转录因子,这些转录因子沿着神经系统的A-P轴调节细胞命运和图案化事件。虽然我们对Hox介导的神经元发育控制的大部分理解源于对像苍蝇这样的分段动物的研究,老鼠,和斑马鱼,重要的新主题正在非分段动物的工作中出现:线虫秀丽隐杆线虫。秀丽隐杆线虫的研究支持这样的观点,即在神经系统的不同生命阶段持续需要Hox基因;它们不仅是分裂祖细胞所必需的,而且在发育和成年期间的有丝分裂后神经元中也是如此。在秀丽隐杆线虫的胚胎和幼体中,Hox基因控制祖细胞规格,细胞存活,和神经元迁移,与它们在其他动物中的神经模式作用一致。在晚期幼虫和成虫中,C.elegansHox基因控制神经元类型特定的身份特征,对神经元功能至关重要,从而将Hox功能库扩展到早期模式之外。这里,我们对秀丽隐杆线虫神经系统的Hox研究进行了全面综述。为了与秀丽隐士社区之外的读者联系,我们强调了Hox基因在构建无脊椎动物和脊椎动物神经系统中的保守作用。最后,我们呼吁关注这些典型的细胞命运调节剂在成人有丝分裂后神经元中的新功能。
    The nervous system emerges from a series of genetic programs that generate a remarkable array of neuronal cell types. Each cell type must acquire a distinct anatomical position, morphology, and function, enabling the generation of specialized circuits that drive animal behavior. How are these diverse cell types and circuits patterned along the anterior-posterior (A-P) axis of the animal body? Hox genes encode transcription factors that regulate cell fate and patterning events along the A-P axis of the nervous system. While most of our understanding of Hox-mediated control of neuronal development stems from studies in segmented animals like flies, mice, and zebrafish, important new themes are emerging from work in a non-segmented animal: the nematode Caenorhabditis elegans. Studies in C. elegans support the idea that Hox genes are needed continuously and across different life stages in the nervous system; they are not only required in dividing progenitor cells, but also in post-mitotic neurons during development and adult life. In C. elegans embryos and young larvae, Hox genes control progenitor cell specification, cell survival, and neuronal migration, consistent with their neural patterning roles in other animals. In late larvae and adults, C. elegans Hox genes control neuron type-specific identity features critical for neuronal function, thereby extending the Hox functional repertoire beyond early patterning. Here, we provide a comprehensive review of Hox studies in the C. elegans nervous system. To relate to readers outside the C. elegans community, we highlight conserved roles of Hox genes in patterning the nervous system of invertebrate and vertebrate animals. We end by calling attention to new functions in adult post-mitotic neurons for these paradigmatic regulators of cell fate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Differential Hox gene expression is central for specification of axial neuronal diversity in the spinal cord. Here, we uncover an additional function of Hox proteins in the developing spinal cord, restricted to B cluster Hox genes. We found that members of the HoxB cluster are expressed in the trunk neural tube of chicken embryo earlier than Hox from the other clusters, with poor antero-posterior axial specificity and with overlapping expression in the intermediate zone (IZ). Gain-of-function experiments of HoxB4, HoxB8 and HoxB9, respectively, representative of anterior, central and posterior HoxB genes, resulted in ectopic progenitor cells in the mantle zone. The search for HoxB8 downstream targets in the early neural tube identified the leucine zipper tumor suppressor 1 gene (Lzts1), the expression of which is also activated by HoxB4 and HoxB9. Gain- and loss-of-function experiments showed that Lzts1, which is expressed endogenously in the IZ, controls neuronal delamination. These data collectively indicate that HoxB genes have a generic function in the developing spinal cord, controlling the expression of Lzts1 and neuronal delamination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号