Homologous pairing

同源配对
  • 文章类型: Journal Article
    目标:硬粒小麦,普通小麦,和面包小麦,普通小麦,是最近起源的两种异源多倍体物种,它们在栽培的数千年中经历了严格的选择计划。在本文中,我们研究了硬粒小麦卫星,并与以前发表的面包小麦卫星进行了比较分析。
    方法:我们使用satMiner方案揭示了硬粒小麦卫星组,该方案基于RepeatExplerr2对Illumina读数的连续聚类,并使用RepeatMaskerv4.0.5估计了每个鉴定的satDNA的丰度和变异。我们还进行了深satDNA家族表征,包括通过硬粒小麦的荧光原位杂交(FISH)进行的染色体定位,以及与面包小麦的FISH模式的比较。基本局部比对搜索工具(BLAST®)用于通过NCBI的基因组数据查看器(GDW)追踪硬粒小麦基因组组装中的每个satDNA,并比较了两个物种的基因组组装。使用MEGA11估算了硬粒和面包小麦的同源satDNA家族之间的序列差异和一致周转率(CTR)。
    结果:这项研究表明,在非常短的时间内,两个物种的卫星DNA(satDNAs)集都发生了重大的定性和定量变化,随着重复数和每个卫星基因座的扩展/收缩,每个物种都不同,对于大多数这些卫星来说,序列的变化率很高,除了所分析的两个物种之间没有共享的satDNAs的出现/损失。这些satDNA的进化变化在物种之间很常见,但这项研究真正值得注意和新颖的是,这些过程发生在两个物种分离的不到8000年的时间里,表明它们的satdna加速进化。
    结论:这些结果,以及许多这些卫星与转座因子的关系,以及它们在着丝粒和染色体亚端粒区水平上产生的多态性,在这些物种的进化起源以及人类在整个栽培历史中施加的选择压力的背景下进行了分析和讨论。
    OBJECTIVE: Durum wheat, Triticum turgidum, and bread wheat, Triticum aestivum, are two allopolyploid species of very recent origin that have been subjected to intense selection programs during the thousands of years they have been cultivated. In this paper, we study the durum wheat satellitome and establish a comparative analysis with the previously published bread wheat satellitome.
    METHODS: We revealed the durum wheat satellitome using the satMiner protocol which is based on consecutive rounds of clustering of Illumina reads by RepeatExplorer2, and estimated abundance and variation for each identified satDNA with RepeatMasker v4.0.5. We have also performed a deep satDNA families characterization including chromosomal location by Fluorescence In Situ Hybridization (FISH) in durum wheat and its comparison with FISH patterns in bread wheat. Basic Local Alignment Search Tool (BLAST®) was used for trailing each satDNA in the assembly of durum wheat genome through NCBI\'s Genome Data Viewer (GDW) and the genome assemblies of both species were compared. Sequence divergence and consensus turnover rate (CTR) between homologous satDNA families of durum and bread wheat were estimated using MEGA11.
    RESULTS: This study reveals that in an exceedingly short period, significant qualitative and quantitative changes have occurred in the set of satellite DNAs (satDNAs) of both species, with expansions/contractions of the number of repeats and the loci per satellite, different in each species, and a high rate of sequence change for most of these satellites, in addition to the emergence/loss of satDNAs not shared between the two species analysed. These evolutionary changes in satDNA are common between species but what is truly remarkable and novel about this study is that these processes have taken place in less than the last ~8000 years separating the two species, indicating an accelerated evolution of their satDNAs.
    CONCLUSIONS: These results, together with the relationship of many of these satellites with transposable elements and the polymorphisms they generate at the level of centromeres and subtelomeric regions of their chromosomes, are analysed and discussed in the context of the evolutionary origin of these species and the selection pressure exerted by man throughout the history of their cultivation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在减数分裂前期I,染色体经历大规模的动态,以允许同源染色体配对,在此之前,染色体末端附着于内核包膜并形成染色体花束。染色体配对对于减数分裂过程中的同源重组和准确的染色体分离至关重要。然而,同源染色体相互识别的具体机制知之甚少。这里,我们研究了水稻(Oryzasativa)减数分裂早期I期的同源染色体配对过程,使用对整个染色体或染色体臂具有特异性的混合寡聚探针。我们发现染色体配对从两端开始,并从早期受精卵到晚期受精卵向中心延伸。对三体性和自四倍体性的遗传分析还表明,配对起始是由染色体的两端诱导的。然而,在端心和端心染色体上缺乏原始末端区域的愈合末端不能启动同源染色体配对,即使它们仍可能在花束阶段进入端粒聚类区域。此外,缺乏两侧远端部分的染色体失去了与其他完整染色体配对的能力。因此,染色体的天然末端在减数分裂期间启动同源染色体配对中起着至关重要的作用,并且可能对基因组分化产生重大影响。
    During meiotic prophase I, chromosomes undergo large-scale dynamics to allow homologous chromosome pairing, prior to which chromosome ends attach to the inner nuclear envelope and form a chromosomal bouquet. Chromosome pairing is crucial for homologous recombination and accurate chromosome segregation during meiosis. However, the specific mechanism by which homologous chromosomes recognize each other is poorly understood. Here, we investigated the process of homologous chromosome pairing during early prophase I of meiosis in rice (Oryza sativa) using pooled oligo probes specific to an entire chromosome or chromosome arm. We revealed that chromosome pairing begins from both ends and extends toward the center from early zygotene through late zygotene. Genetic analysis of both trisomy and autotetraploidy also showed that pairing initiation is induced by both ends of a chromosome. However, healed ends that lack the original terminal regions on telocentric and acrocentric chromosomes cannot initiate homologous chromosome pairing, even though they may still enter the telomere clustering region at the bouquet stage. Furthermore, a chromosome that lacks the distal parts on both sides loses the ability to pair with other intact chromosomes. Thus, the native ends of chromosomes play a crucial role in initiating homologous chromosome pairing during meiosis and likely have a substantial impact on genome differentiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在面包小麦(TriticumaestivumL.)中,减数分裂过程中的染色体关联受到极大的调节,并在端粒和端粒下启动,富含卫星DNA(satDNA)。我们介绍了面包小麦卫星的研究和表征,以阐明小麦端粒的分子组织。我们的结果表明,面包小麦基因组的2.53%由satDNA组成,并且端粒下特别富含此类DNA序列。已鉴定出34个卫星DNA(这项工作中首次有21个),分析和细胞遗传学验证。许多satDNA是在特定的亚端粒染色体区域发现的,揭示了小麦亚基因组中的亚端粒组织的不对称性。这可能在减数分裂过程中正确的同源识别和配对中起作用。还构建了小麦卫星的综合物理图。据我们所知,我们的结果表明,细胞遗传学和基因组研究的结合使小麦卫星体的第一次全面分析,揭示了复杂的小麦基因组组织,特别是关于亚端粒的多态性质及其在减数分裂过程中对染色体识别和配对的推定意义。
    In bread wheat (Triticum aestivum L.), chromosome associations during meiosis are extremely regulated and initiate at the telomeres and subtelomeres, which are enriched in satellite DNA (satDNA). We present the study and characterization of the bread wheat satellitome to shed light on the molecular organization of wheat subtelomeres. Our results revealed that the 2.53% of bread wheat genome is composed by satDNA and subtelomeres are particularly enriched in such DNA sequences. Thirty-four satellite DNA (21 for the first time in this work) have been identified, analyzed and cytogenetically validated. Many of the satDNAs were specifically found at particular subtelomeric chromosome regions revealing the asymmetry in subtelomere organisation among the wheat subgenomes, which might play a role in proper homologous recognition and pairing during meiosis. An integrated physical map of the wheat satellitome was also constructed. To the best of our knowledge, our results show that the combination of both cytogenetics and genome research allowed the first comprehensive analysis of the wheat satellitome, shedding light on the complex wheat genome organization, especially on the polymorphic nature of subtelomeres and their putative implication in chromosome recognition and pairing during meiosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在减数分裂期间,染色质和转录组经历显著的转换。尽管最近的研究已经探索了精子发生过程中的基因组重组,卵子发生中的染色质重塑和同源配对的特征在很大程度上仍然难以捉摸。我们使用低输入高通过染色体构象捕获(Hi-C)和RNA测序(RNA-seq)全面比较了雌性和雄性小鼠减数分裂前期连续子阶段的染色质结构和转录组。两性的间隔和拓扑关联域(TAD)逐渐消失,并缓慢恢复。我们发现,同系物在瘦素到受精卵过渡之前和之后采用了不同的性别保守配对策略,从长散布核元素(LINE)富集的隔室B变为短散布核元素(SINE)富集的隔室A。我们补充了标记基因,并预测了每个子阶段的性别特异性减数分裂不育基因。这项研究提供了有关染色体结构中性别之间相似性和区别的宝贵见解,同源配对,在卵子发生和精子发生的减数分裂前期和转录组。
    During meiosis, the chromatin and transcriptome undergo prominent switches. Although recent studies have explored the genome reorganization during spermatogenesis, the chromatin remodeling in oogenesis and characteristics of homologous pairing remain largely elusive. We comprehensively compared chromatin structures and transcriptomes at successive substages of meiotic prophase in both female and male mice using low-input high-through chromosome conformation capture (Hi-C) and RNA sequencing (RNA-seq). Compartments and topologically associating domains (TADs) gradually disappeared and slowly recovered in both sexes. We found that homologs adopted different sex-conserved pairing strategies prior to and after the leptotene-to-zygotene transition, changing from long interspersed nuclear element (LINE)-enriched compartments B to short interspersed nuclear element (SINE)-enriched compartments A. We complemented marker genes and predicted the sex-specific meiotic sterile genes for each substage. This study provides valuable insights into the similarities and distinctions between sexes in chromosome architecture, homologous pairing, and transcriptome during meiotic prophase of both oogenesis and spermatogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    减数分裂涉及染色体的空间组织和相互作用的深刻变化,从而实现了该过程的两个主要功能:增加遗传多样性和降低倍性水平。这两个功能是由关键事件,如同源染色体配对,突触,重组和分离。在大多数有性繁殖的真核生物中,同源染色体配对取决于一套机制,其中一些与在前期I开始时诱导的DNA双链断裂(DSB)的修复有关,和其他在DSB形成之前运作的。在这篇文章中,我们将回顾模型生物用于与DSB无关的配对的各种策略。具体来说,我们将关注染色体聚类等机制,核和染色体运动,以及特定蛋白质的参与,非编码RNA,和DNA序列。
    Meiosis involves deep changes in the spatial organisation and interactions of chromosomes enabling the two primary functions of this process: increasing genetic diversity and reducing ploidy level. These two functions are ensured by crucial events such as homologous chromosomal pairing, synapsis, recombination and segregation. In most sexually reproducing eukaryotes, homologous chromosome pairing depends on a set of mechanisms, some of them associated with the repair of DNA double-strand breaks (DSBs) induced at the onset of prophase I, and others that operate before DSBs formation. In this article, we will review various strategies utilised by model organisms for DSB-independent pairing. Specifically, we will focus on mechanisms such as chromosome clustering, nuclear and chromosome movements, as well as the involvement of specific proteins, non-coding RNA, and DNA sequences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Review
    性繁殖生物通过减数分裂细胞分裂产生单倍体配子,在此过程中,单轮DNA复制之后是两个连续的染色体分离。在减数分裂前期发生一系列减数分裂特异性事件以确保成功的染色体分离。这些事件包括程序性DNA双链断裂形成,由细胞质力驱动的染色体运动,同源配对,突触复合体安装,和同源物之间的交叉形成。相分离已成为控制细胞生物分子材料组织和生物过程的关键原理。最近的研究表明,相分离参与了减数分裂染色体相关结构的组装。在这里,我们回顾并讨论了相分离如何参与减数分裂染色体动力学,并提出它可能为了解减数分裂调控的奥秘提供机会。
    Sexually reproducing organisms produce haploid gametes through meiotic cell division, during which a single round of DNA replication is followed by two consecutive chromosome segregation. A series of meiosis-specific events take place during the meiotic prophase to ensure successful chromosome segregation. These events include programmed DNA double-strand break formation, chromosome movement driven by cytoplasmic forces, homologous pairing, synaptonemal complex installation, and inter-homolog crossover formation. Phase separation has emerged as a key principle controlling cellular biomolecular material organization and biological processes. Recent studies have revealed the involvements of phase separation in assembling meiotic chromosome-associated structures. Here we review and discuss how phase separation may participate in meiotic chromosome dynamics and propose that it may provide opportunities to understand the mysteries in meiotic regulations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在大多数真核生物中,同源染色体的配对是减数分裂的一个重要特征,确保同源重组和分离。然而,当配对过程开始时,它仍在调查中。对比数据存在于小家鼠中,因为已经描述了leptoteneDSB依赖性和leptoteneDSB无关的机制。为了解开这个争论,我们使用基于三维荧光原位杂交的方案检查了减数分裂前和减数分裂小家鼠细胞的同源配对,这使得能够使用DNA绘画探针分析整个核型。我们的数据以明确的方式确定了73.83%的同源染色体已经在减数分裂前期(精原细胞-早期前精母细胞)配对。配对同源染色体的百分比在前期-受精卵阶段增加到84.60%,在粗品阶段达到100%。重要的是,我们的结果表明,在减数分裂开始之前观察到的同源配对比例很高;这种配对不是随机发生的,因为该百分比高于在体细胞(19.47%)和非同源染色体之间(41.1%)观察到的百分比。最后,我们还观察到,减数分裂前同源配对是异步的,并且与染色体大小无关,GC含量,或存在NOR区域。
    In most eukaryotes, pairing of homologous chromosomes is an essential feature of meiosis that ensures homologous recombination and segregation. However, when the pairing process begins, it is still under investigation. Contrasting data exists in Mus musculus, since both leptotene DSB-dependent and preleptotene DSB-independent mechanisms have been described. To unravel this contention, we examined homologous pairing in pre-meiotic and meiotic Mus musculus cells using a three-dimensional fluorescence in situ hybridization-based protocol, which enables the analysis of the entire karyotype using DNA painting probes. Our data establishes in an unambiguously manner that 73.83% of homologous chromosomes are already paired at premeiotic stages (spermatogonia-early preleptotene spermatocytes). The percentage of paired homologous chromosomes increases to 84.60% at mid-preleptotene-zygotene stage, reaching 100% at pachytene stage. Importantly, our results demonstrate a high percentage of homologous pairing observed before the onset of meiosis; this pairing does not occur randomly, as the percentage was higher than that observed in somatic cells (19.47%) and between nonhomologous chromosomes (41.1%). Finally, we have also observed that premeiotic homologous pairing is asynchronous and independent of the chromosome size, GC content, or presence of NOR regions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Transvection, the functional interaction between homologous alleles, was first described in Drosophila in the 1950\'s. While transvection has been documented in a growing list of genes, using mutant alleles or synthetic constructs, in Drosophila and other organisms, the extent of its relevance to gene expression in physiological conditions has remained questionable. The molecular mechanisms underlying transvection are still largely unexplored, although hints suggest a link with the general machinery that controls the genome organization in the nucleus. In this review, we discuss recent results establishing the relevance of transvection for proper gene regulation, and in particular for the sexually dimorphic regulation of the Drosophila X-linked gene yellow. We also discuss the role that DNA insulator sequences and chromatin architectural proteins play in bringing in proximity homologous alleles, and how they may contribute to interallelic gene regulation.
    La transvection, l’interaction fonctionnelle entre des allèles homologues, a été décrite pour la première fois chez la drosophile dans les années 1950. Bien que la transvection ait été documentée pour une liste croissante de gènes, en utilisant des allèles mutants ou des constructions synthétiques, chez la drosophile et d’autres organismes, l’étendue de sa pertinence pour la régulation de l’expression des gènes dans des conditions physiologiques reste une question ouverte. Les mécanismes moléculaires qui sous-tendent la transvection sont encore largement inexplorés, bien que des indices suggèrent un lien avec la machinerie générale qui contrôle l’organisation du génome dans le noyau. Dans cette revue, nous discutons des résultats récents établissant la pertinence de la transvection pour la régulation correcte des gènes, et en particulier pour la régulation sexuellement dimorphique du gène yellow qui est porté par le chromosome X de la drosophile. Nous discutons également du rôle que jouent les séquences d’ADN isolatrices et les protéines architecturales de la chromatine dans le rapprochement des allèles homologues, et comment elles peuvent contribuer à la régulation interallélique des gènes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基因组结构促进染色体识别,配对,和重组。端粒和亚端粒在减数分裂开始时在特定的染色体识别和配对中起重要作用,这是允许同源物(同一基因组中的等效染色体)在后期阶段进行染色体重组的关键过程。在植物多倍体中,这些末端区域在同源染色体识别方面更为重要,由于存在同系物(来自相关基因组的等效染色体)。虽然端粒相互作用似乎有助于同源配对,因此,减数分裂的进展,其他染色体区域,如端粒下,需要考虑,因为端粒的DNA序列不是染色体特异性的。此外,重组在端粒下起作用,就像黑麦和小麦一样,同源识别和配对通常与重组区域相关,而不是与交叉不良区域相关。在植物育种的背景下,了解同源染色体如何在减数分裂开始时启动配对,可以有助于杂种或种间遗传杂交中的染色体操作。因此,为了将理想的农艺性状从相关的遗传供体物种转移到作物中,可以促进种间染色体关联的重组。在这次审查中,我们总结了端粒和端粒下对减数分裂早期染色质动力学的重要性及其在植物育种框架中重组的意义。
    Genomic architecture facilitates chromosome recognition, pairing, and recombination. Telomeres and subtelomeres play an important role at the beginning of meiosis in specific chromosome recognition and pairing, which are critical processes that allow chromosome recombination between homologs (equivalent chromosomes in the same genome) in later stages. In plant polyploids, these terminal regions are even more important in terms of homologous chromosome recognition, due to the presence of homoeologs (equivalent chromosomes from related genomes). Although telomeres interaction seems to assist homologous pairing and consequently, the progression of meiosis, other chromosome regions, such as subtelomeres, need to be considered, because the DNA sequence of telomeres is not chromosome-specific. In addition, recombination operates at subtelomeres and, as it happens in rye and wheat, homologous recognition and pairing is more often correlated with recombining regions than with crossover-poor regions. In a plant breeding context, the knowledge of how homologous chromosomes initiate pairing at the beginning of meiosis can contribute to chromosome manipulation in hybrids or interspecific genetic crosses. Thus, recombination in interspecific chromosome associations could be promoted with the aim of transferring desirable agronomic traits from related genetic donor species into crops. In this review, we summarize the importance of telomeres and subtelomeres on chromatin dynamics during early meiosis stages and their implications in recombination in a plant breeding framework.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Heterochromatin-related epigenetic mechanisms, such as DNA methylation, facilitate pairing of homologous chromosomes during the meiotic prophase of mammalian spermatogenesis. In pro-spermatogonia, de novo DNA methylation plays a key role in completing meiotic prophase and initiating meiotic division. However, the role of maintenance DNA methylation in the regulation of meiosis, especially in the adult, is not well understood. Here, we reveal that NP95 (also known as UHRF1) and DNMT1 - two essential proteins for maintenance DNA methylation - are co-expressed in spermatogonia and are necessary for meiosis in male germ cells. We find that Np95- or Dnmt1-deficient spermatocytes exhibit spermatogenic defects characterized by synaptic failure during meiotic prophase. In addition, assembly of pericentric heterochromatin clusters in early meiotic prophase, a phenomenon that is required for subsequent pairing of homologous chromosomes, is disrupted in both mutants. Based on these observations, we propose that DNA methylation, established in pre-meiotic spermatogonia, regulates synapsis of homologous chromosomes and, in turn, quality control of male germ cells. Maintenance DNA methylation, therefore, plays a role in ensuring faithful transmission of both genetic and epigenetic information to offspring.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号