Hoilungia

  • 文章类型: Journal Article
    在早期分支后生动物谱系中,胎盘动物门仍然是探索最少的物种之一。130多年来,该门以单一物种Trichoplaxadhaerens为代表,该动物具有最简单的已知身体计划(没有任何器官的三个细胞层),但行为复杂。最近,在全球范围内对placozoans进行广泛的采样及其随后的遗传分析揭示了全球范围内具有众多隐秘物种的令人难以置信的生物多样性。然而,迄今为止只有少数文化协议可用,所有这些都只属于一个物种。这里,我们描述了代表两个placozoan属的四个不同物种的繁殖:Trichoplaxadhaerens,Trichoplaxsp.H2,Hoilungiasp.H4,和Hoilungiahongkongensis起源于不同的生物群落。我们的协议允许在可比条件下培养所有物种。接下来,我们概述了各种食物来源和优化的菌株特异性参数,从而可以进行长期培养。这些协议可以促进胎盘生物和行为的比较分析,它们一起将有助于破译动物组织的一般原则。
    The phylum Placozoa remains one of the least explored among early-branching metazoan lineages. For over 130 years, this phylum had been represented by the single species Trichoplax adhaerens-an animal with the simplest known body plan (three cell layers without any organs) but complex behaviors. Recently, extensive sampling of placozoans across the globe and their subsequent genetic analysis have revealed incredible biodiversity with numerous cryptic species worldwide. However, only a few culture protocols are available to date, and all are for one species only. Here, we describe the breeding of four different species representing two placozoan genera: Trichoplax adhaerens, Trichoplax sp. H2, Hoilungia sp. H4, and Hoilungia hongkongensis originating from diverse biotopes. Our protocols allow to culture all species under comparable conditions. Next, we outlined various food sources and optimized strain-specific parameters enabling long-term culturing. These protocols can facilitate comparative analyses of placozoan biology and behaviors, which together will contribute to deciphering general principles of animal organization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    胎盘动物在形态上是最简单的自由生活的动物。它们代表了一个独特的机会窗口,可以了解动物组织的起源以及未来系统和合成生物学的生活规则。然而,尽管他们进行了100多年的调查,我们对他们的组织知之甚少,自然栖息地,和生活策略。这里,我们介绍了这个独特的动物门,并强调了一些对扩大生物医学科学前沿至关重要的方向。特别是,了解胎盘生物多样性的基因组基础,细胞身份,连通性,繁殖,和细胞行为基础是未来研究的关键热点。
    Placozoans are morphologically the simplest free-living animals. They represent a unique window of opportunities to understand both the origin of the animal organization and the rules of life for the system and synthetic biology of the future. However, despite more than 100 years of their investigations, we know little about their organization, natural habitats, and life strategies. Here, we introduce this unique animal phylum and highlight some directions vital to broadening the frontiers of the biomedical sciences. In particular, understanding the genomic bases of placozoan biodiversity, cell identity, connectivity, reproduction, and cellular bases of behavior are critical hot spots for future studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    胎盘动物是小的圆盘形动物,代表已知的最简单的,可能是祖先,自由生活的动物组织。只有六种形态不同的细胞类型,没有任何识别的神经元或肌肉,胎盘动物表现出快速的效应子反应和复杂的行为。然而,对这些动物的电机制知之甚少。这里,我们显示了四种placozoans中存在快速动作电位(Trichoplaxadhaerens[H1单倍型],Trichoplaxsp.[H2],香港海伦佳[H13],和Hoilungiasp.[H4])。这些动作电位是钠依赖性的并且可以是可诱导的。分子分析表明存在5-7种不同类型的电压门控钠通道,与许多其他后生动物相比,它显示出大量的进化辐射。早期分支后生动物谱系中钠通道的这种出乎意料的多样性反映了这些无神经动物中重复事件和独特行为整合的平行进化。
    Placozoa are small disc-shaped animals, representing the simplest known, possibly ancestral, organization of free-living animals. With only six morphological distinct cell types, without any recognized neurons or muscle, placozoans exhibit fast effector reactions and complex behaviors. However, little is known about electrogenic mechanisms in these animals. Here, we showed the presence of rapid action potentials in four species of placozoans (Trichoplax adhaerens [H1 haplotype], Trichoplax sp.[H2], Hoilungia hongkongensis [H13], and Hoilungia sp. [H4]). These action potentials are sodium-dependent and can be inducible. The molecular analysis suggests the presence of 5-7 different types of voltage-gated sodium channels, which showed substantial evolutionary radiation compared to many other metazoans. Such unexpected diversity of sodium channels in early-branched metazoan lineages reflect both duplication events and parallel evolution of unique behavioral integration in these nerveless animals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号