High-voltage

高电压
  • 文章类型: Journal Article
    固体聚合物电解质(SPE)代表了高能固态锂金属电池的关键进步。然而,界面接触不足仍然是一个重要的瓶颈,阻碍可伸缩性和应用程序。界面接触不足仍然是一个重要的瓶颈,阻碍可伸缩性和应用程序。最近的努力集中在通过原位聚合将液体/固体界面转化为固体/固体界面。这显示出特别是在降低界面阻抗方面的潜力。这里,我们通过将界面修饰与受药物靶向作用启发的原位聚合技术相结合,设计了具有双重增强稳定界面的高压SSLMB。理论计算和飞行时间二次离子质谱(TOF-SIMS)分析表明,四亚甲基砜(TMS)和双(2,2,2-三氟甲基)碳酸酯(TFEC)在LiNi0.8Co0.1Mn0.1O2(NCM)阴极和Li阳极的界面上表现出选择性吸附,分别。这些化合物进一步分解形成稳定的阴极-电解质界面(CEI)膜和固体电解质界面(SEI)膜,从而同时实现SPE与Li阳极和NCM阴极两者之间的优异界面。开发的Li|SPE||Li电池在0.3mAcm-2下持续循环超过1000小时,NCM|SPE||Li电池在1°C下1000次循环后也表现出86.8%的出色容量保持率。这项工作将为具有稳定接口的高压SSLMB的合理设计提供有价值的见解,利用原位聚合作为基石技术。
    Solid polymer electrolytes (SPEs) represent a pivotal advance toward high-energy solid-state lithium metal batteries. However, inadequate interfacial contact remains a significant bottleneck, impeding scalability and application. Inadequate interfacial contact remains a significant bottleneck, impeding scalability and application. Recent efforts have focused on transforming liquid/solid interfaces into solid/solid ones through in situ polymerization, which shows potential especially in reducing interface impedance. Here, we designed high-voltage SSLMBs with dual-reinforced stable interfaces by combining interface modification with an in situ polymerization technology inspired by targeted effects in medicine. Theoretical calculations and time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis demonstrate that tetramethylene sulfone (TMS) and bis(2,2,2-trifluoromethyl) carbonate (TFEC) exhibit selective adsorption at the interface of the LiNi0.8Co0.1Mn0.1O2 (NCM) cathode and Li anode, respectively. These compounds further decompose to form a stable cathode-electrolyte interface (CEI) film and a solid electrolyte interface (SEI) film, thereby simultaneously achieving a superior interface between the SPE and both the Li anode and NCM cathode. The developed Li||SPE||Li cell sustained cycling for more than 1000 h at 0.3 mA cm-2, and the NCM||SPE||Li cell also demonstrated an excellent capacity retention of 86.8% after 1000 cycles at 1 °C. This work will provide valuable insights for the rational design of high-voltage SSLMBs with stable interfaces, leveraging in situ polymerization as a cornerstone technology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    固态电解质中差的电化学稳定性窗口和低的离子电导率阻碍了安全、高电压,和能量密集型锂金属电池。在这里,利用腈基独特的电子效应,我们设计了一种新型的基于氮烷的单离子共价有机框架(CN-iCOF)结构,该结构在锂金属电池中具有有效的Li传输和高电压稳定性。密度泛函理论(DFT)计算和分子动力学(MD)表明,吸电子腈基不仅导致超低的HOMO能量轨道,而且还通过电荷离域增强了Li解离,导致0.93的高tLi+和高达5.6V的显著氧化稳定性(vs.Li+/Li)同时。此外,利用Strecker反应的氰化将可逆的亚胺键转化为稳定的含sp3碳的氮杂阴离子,这促进了沿一维阴离子通道的传输“阶梯”的扭曲排列,在环境温度下,离子电导率可达到1.33×10-5Scm-1,而无需任何添加剂。因此,CN-iCOF允许具有高压阴极的固态锂金属电池的运行,例如LiNi0.8Mn0.1Co0.1O2(NCM811),证明稳定的锂沉积高达1,100小时和可逆电池循环在环境温度高达4.5V,阐明为即将推出的高性能电池发现新功能的重要性。
    The poor electrochemical stability window and low ionic conductivity in solid-state electrolytes hinder the development of safe, high-voltage, and energy-dense lithium metal batteries. Herein, taking advantage of the unique electronic effect of nitrile groups, we designed a novel azanide-based single-ion covalent organic framework (CN-iCOF) structure that possesses effective Li+ transport and high-voltage stability in lithium metal batteries. Density functional theory (DFT) calculations and molecular dynamics (MD) revealed that electron-withdrawing nitrile groups not only resulted in an ultralow HOMO energy orbital but also enhanced Li+ dissociation through charge delocalization, leading to a high tLi+ of 0.93 and remarkable oxidative stability up to 5.6 V (vs. Li+/Li) simultaneously. Moreover, cyanation leveraging Strecker reaction transformed reversible imine-linkage to a stable sp3-carbon-containing azanide anion, which facilitated contorted alignment of transport \"ladders\" along the one-dimensional anionic channels and the ionic conductivity could reach 1.33 × 10-5 S cm-1 at ambient temperature without any additives. As a result, CN-iCOF allowed operation of solid-state lithium metal batteries with high-voltage cathodes such as LiNi0.8Mn0.1Co0.1O2 (NCM811), demonstrating stable lithium deposition up to 1,100 h and reversible battery cycling at ambient temperature up to 4.5 V, shedding light on the importance of discovering new functionality for forthcoming high-performance batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    阴极的细小结构完整性和高电位下不稳定的界面微观动力学是固态锂金属电池(LMB)降解的原因。这里,高电压LMB已经通过调节聚合物电解质固有结构通过中间介电常数溶剂并进一步诱导梯度固态电解质界面相来操作。得益于磷酸三甲酯(TMP)与阴极之间的化学吸附,诱导富含LiPFxOy和LiF的梯度相间,从而即使在4.9V截止电压下也能确保商用LiNi0.8Co0.1Mn0.1O2(NCM811)阴极的结构完整性和界面兼容性。最终,基于TMP调制聚合物电解质的NCM811|Li全电池的比容量从4.5V增加了27.7%。这种通用的电解质溶剂筛选方法及其衍生的电极界面操纵策略为准固态LMB开辟了新途径。
    Parlous structure integrity of the cathode and erratic interfacial microdynamics under high potential take responsibility for the degradation of solid-state lithium metal batteries (LMBs). Here, high-voltage LMBs have been operated by modulating the polymer electrolyte intrinsic structure through an intermediate dielectric constant solvent and further inducing the gradient solid-state electrolyte interphase. Benefiting from the chemical adsorption between trimethyl phosphate (TMP) and the cathode, the gradient interphase rich in LiPFxOy and LiF is induced, thereby ensuring the structural integrity and interface compatibility of the commercial LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode even at the 4.9 V cutoff voltage. Eventually, the specific capacity of NCM811|Li full cell based on TMP-modulated polymer electrolyte increased by 27.7% from 4.5 to 4.9 V. Such a universal screening method of electrolyte solvents and its derived electrode interfacial manipulation strategy opens fresh avenues for quasi-solid-state LMBs with high specific energy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    提高层状氧化物正极材料的能量密度对于实现高性能钠离子电池和促进其商业应用具有重要意义。高电压下的晶格氧氧化还原通常能够实现高容量和能量密度。但是结构退化,严重的电压衰减,不可逆的氧释放导致循环性能差,严重制约了实际应用。在此,我们将一种新型的栅栏型超结构(2a×3a型超电池)引入O3型层状阴极材料Na0.9Li0.1Ni0.3Mn0.3Ti0.3O2,并在4.4V的高电压下实现稳定的循环性能。从而显著减少晶格氧的不可逆释放并极大地稳定晶体结构。阴极表现出545Whkg-1的高能量密度,高速率能力(在5C时为112.8mAhg-1)和高循环稳定性(在200次循环时为85.8%,在1C时为148.6mAhg-1的高初始容量)伴随着可忽略的电压衰减(在200次循环时为98.5%)。该策略为设计用于Na离子电池的稳定的高电压层状阴极材料提供了上部结构的明显间隔效应。
    Enhancing the energy density of layered oxide cathode materials is of great significance for realizing high-performance sodium-ion batteries and promoting their commercial application. Lattice oxygen redox at high voltage usually enables a high capacity and energy density. But the structural degradation, severe voltage decay, and the resultant poor cycling performance caused by irreversible oxygen release seriously restrict the practical application. Herein we introduce a novel fence-type superstructure (2a×3a type supercell) into O3-type layered cathode material Na0.9Li0.1Ni0.3Mn0.3Ti0.3O2 and achieve a stable cycling performance at a high voltage of 4.4 V. The fence-type superstructure effectively inhibits the formation of the vacancy clusters resulting from out-of-plane Li migration and in-plane transition metal migration at high voltage due to the wide d-spacing, thereby significantly reducing the irreversible release of lattice oxygen and greatly stabilizing the crystal structure. The cathode exhibits a high energy density of 545 Wh kg-1, a high rate capability (112.8 mAh g-1 at 5 C) and a high cycling stability (85.8 %@200 cycles with a high initial capacity of 148.6 mAh g-1 at 1 C) accompanied by negligible voltage attenuation (98.5 %@200 cycles). This strategy provides a distinct spacing effect of superstructure to design stable high-voltage layered cathode materials for Na-ion batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高能量密度锂金属电池(LMB)的稳定性在很大程度上取决于在锂金属阳极上形成的固体电解质界面(SEI)的组成。在这项研究中,富含无机物的SEI层是通过将双盐添加剂掺入碳酸盐基电解质中来实现的。在这个SEI层中,LiF的存在,聚硫辛酸盐,并观察到Li3N,通过在碳酸亚乙酯:碳酸甲乙酯:碳酸二甲酯中以1:1:1的体积比将1.0正双(三氟甲磺酰基)酰亚胺锂合并而产生,添加2重量%的二氟磷酸锂和2重量%的二氟(草酸)硼酸锂添加剂(EL-DO)。此外,该配方有效地减轻了铝集电器的腐蚀。EL-DO表现突出,包括在Li||LiNi0.8Co0.1Mn0.1O2(NCM811)配置中200次循环后,Li||Cu电池的平均库仑效率为98.2%,稳定的放电容量约为162mAhg-1。此外,EL-DO不仅具有提高LMB性能的潜力,而且还具有提高锂离子电池性能的潜力。在Gr||NCM811单元使用EL-DO的情况下,它始终保持高放电容量,甚至在第100次循环后达到约135mAhg-1,超越其他电解质的性能。这项研究强调了双盐添加剂在提高锂电池性能方面的协同作用。
    The stability of high-energy-density lithium metal batteries (LMBs) heavily relies on the composition of the solid electrolyte interphase (SEI) formed on lithium metal anodes. In this study, the inorganic-rich SEI layer was achieved by incorporating bisalts additives into carbonate-based electrolytes. Within this SEI layer, the presence of LiF, polythionate, and Li3N was observed, generated by combining 1.0 м lithium bis(trifluoromethanesulfonyl)imide in ethylene carbonate: ethyl methyl carbonate:dimethyl carbonate in a 1 : 1 : 1 volume ratio, with the addition of 2 wt% lithium difluorophosphate and 2 wt% lithium difluoro(oxalato)borate additives (EL-DO). Furthermore, this formulation effectively mitigated corrosion of aluminum current collectors. EL-DO exhibited outstanding performance, including an average coulombic efficiency of 98.2 % in Li||Cu cells and a stable discharge capacity of approximately 162 mAh g-1 after 200 cycles in a Li||LiNi0.8Co0.1Mn0.1O2 (NCM811) configuration. Moreover, EL-DO displayed the potential to enhance the performance not only of LMBs but also of lithium-ion batteries. In the case of Gr||NCM811 cell using EL-DO, it consistently maintained high discharge capacities, even achieving around 135 mAh g-1 after the 100th cycle, surpassing the performance of other electrolytes. This study underscores the synergistic impact of bisalts additives in elevating the performance of lithium batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    带状疱疹后遗神经痛(PHN)是带状疱疹感染最常见和最严重的并发症之一。脉冲射频(PRF)疗法已成为治疗PHN的神经调节技术。两种治疗方案可用于PRF,包括高压和标准电压PRF。一些研究表明,前者比后者具有更好的临床疗效。第一次,这项汇总分析比较了这两种手术治疗PHN的疗效和安全性.5个常用的数据库被用于确定符合条件的研究。本研究已在PROSPERO(ID:CRD42023460236)上注册,提供了更多相关信息。最后,纳入了4项随机对照试验(RCT),共285名参与者.综合比值比(OR)显示,高压PRF的治疗效率明显高于标准PRF(OR=1.4,95CI:1.16至1.69,P<0.001)。此外,1周时高电压PRF组视觉模拟评分(VAS)明显低于标准PRF组(SMD=-0.776,95CI:-1.408~-0.145,P=0.016),一个月(SMD=-0.544,95CI:-0.907至-0.180,P=0.003),治疗后3个月(SMD=-1.096,95CI:-1.504至-0.687,P<0.001),特别是在手术后的三个月。然而,两组间的VAS具有可比性(SMD=-0.94,95CI:-1.985~0.104,P=0.077).高电压PRF患者的不良事件发生率未显著高于标准PRF患者(OR=1.56,95CI:0.78~3.13,P=0.208)。总之,目前的研究显示,在改善PHN患者的镇痛效果方面,高电压PRF优于标准电压PRF.此外,它不会增加治疗相关不良反应的发生率.仍需要进一步的研究来确定PHN患者PRF治疗的最佳电压和持续时间。
    Postherpetic neuralgia (PHN) is one of the most common and serious complications of herpes zoster infection. Pulsed radiofrequency (PRF) therapy has emerged to be a neuromodulation technique for the treatment of PHN. Two therapeutic options are available for PRF, including high-voltage and standard-voltage PRF. Some studies suggested that the former one had better clinical efficacy than the latter one. For the first time, this pooled analysis compared the efficacy and safety of these two surgeries for the treatment of PHN. Five commonly used databases were applied to identify the eligible studies. This study was registered on the PROSPERO (ID: CRD42023460236), which provided more relevant information. Finally, four randomized controlled trials (RCTs) with 285 participants were included. The combined odds ratios (OR) showed that high-voltage PRF exhibited a significantly higher treatment efficiency than the standard PRF (OR = 1.4, 95%CI: 1.16 to 1.69, P < 0.001). Additionally, the visual analogue scale (VAS) in the high-voltage PRF group was significantly lower than that of the standard PRF group at one week (SMD = -0.776, 95%CI: -1.408 to -0.145, P = 0.016), one month (SMD = -0.544, 95%CI: -0.907 to -0.180, P = 0.003), and three months (SMD = -1.096, 95%CI: -1.504 to -0.687, P < 0.001) after treatment, particularly at the three months after surgery. However, the VAS was comparable between the two groups (SMD = -0.94, 95%CI: -1.985 to 0.104, P = 0.077). Patients who underwent high-voltage PRF did not have a significantly higher incidence of adverse events than those with standard PRF (OR = 1.56, 95%CI: 0.78 to 3.13, P = 0.208). In summary, the current study revealed that high-voltage PRF is superior to standard-voltage PRF in improving analgesic efficacy in patients with PHN. Additionally, it does not increase the incidence of treatment-related adverse effects. Further studies are still warranted to determine the optimal voltage and duration of PRF treatment for patients with PHN.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对具有更高能量密度的智能电子器件的追求加剧了高压LiCoO2(LCO)的发展。尽管有潜力,在4.7V下运行的LCO材料面临严峻挑战,包括界面退化和结构坍塌。在这里,我们提出了一种通过精确的纳米膜涂层和掺杂的集体表面结构,该结构结合了超薄的LiAlO2涂层和Al的梯度掺杂。这种架构不仅减轻了副反应,同时也改善了Li+在LCO表面的迁移动力学。同时,Al的梯度掺杂抑制了O3-H1-3-O1的不可逆相变引起的严重晶格畸变,从而增强了LCO在4.7V循环过程中的电化学稳定性。DFT计算进一步表明,我们的方法显着提高了电子电导率。因此,改性LCO在4.7V时表现出230mAhg-1的出色可逆容量,这比4.5V时的常规容量高约28%。为了证明它们的实际应用,我们的阴极结构在高工作电压下的全袋电池配置中显示出改善的稳定性。LCO表现出优异的循环稳定性,在4.5V下1000次循环后保留82.33%。这种多功能表面改性策略为LCO材料的实际应用提供了可行的途径。
    The quest for smart electronics with higher energy densities has intensified the development of high-voltage LiCoO2 (LCO). Despite their potential, LCO materials operating at 4.7 V faces critical challenges, including interface degradation and structural collapse. Herein, we propose a collective surface architecture through precise nanofilm coating and doping that combines an ultra-thin LiAlO2 coating layer and gradient doping of Al. This architecture not only mitigates side reactions, but also improves the Li+ migration kinetics on the LCO surface. Meanwhile, gradient doping of Al inhibited the severe lattice distortion caused by the irreversible phase transition of O3-H1-3-O1, thereby enhanced the electrochemical stability of LCO during 4.7 V cycling. DFT calculations further revealed that our approach significantly boosts the electronic conductivity. As a result, the modified LCO exhibited an outstanding reversible capacity of 230 mAh g-1 at 4.7 V, which is approximately 28 % higher than the conventional capacity at 4.5 V. To demonstrate their practical application, our cathode structure shows improved stability in full pouch cell configuration under high operating voltage. LCO exhibited an excellent cycling stability, retaining 82.33 % after 1000 cycles at 4.5 V. This multifunctional surface modification strategy offers a viable pathway for the practical application of LCO materials, setting a new standard for the development of high-energy-density and long-lasting electrode materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高电压和快速充电的LiCoO2(LCO)是高能量/功率密度锂离子电池的关键。然而,不稳定的表面结构和不利的电子/离子电导率严重阻碍了其高压快速充电循环能力。这里,我们在4.65VLCO电极上构建了富含Li/Na-B-Mg-Si-O-F的混合离子/电子界面网络,以增强其倍率能力和长期循环稳定性。具体来说,所得的人工混合导电网络通过界面离子-电子合作增强了Co3/4/O2-/n-氧化还原的可逆转化,并抑制了界面副反应,诱导超薄但紧凑的阴极电解质界面。同时,衍生的近表面Na/Mg2/Si4柱状局部插层结构极大地促进了Li在4.55V相变周围的扩散,并稳定了阴极界面。最后,出色的3C(1C=274mAg-1)快速充电性能,在1000次循环中具有73.8%的容量保留率。我们的发现为稳定和增强快速充电阴极材料的界面离子/电子协同作用的基本机制提供了新的见解。
    High-voltage and fast-charging LiCoO2 (LCO) is key to high-energy/power-density Li-ion batteries. However, unstable surface structure and unfavorable electronic/ionic conductivity severely hinder its high-voltage fast-charging cyclability. Here, we construct a Li/Na-B-Mg-Si-O-F-rich mixed ion/electron interface network on the 4.65 V LCO electrode to enhance its rate capability and long-term cycling stability. Specifically, the resulting artificial hybrid conductive network enhances the reversible conversion of Co3+/4+/O2-/n- redox by the interfacial ion-electron cooperation and suppresses interface side reactions, inducing an ultrathin yet compact cathode electrolyte interphase. Simultaneously, the derived near-surface Na+/Mg2+/Si4+-pillared local intercalation structure greatly promotes the Li+ diffusion around the 4.55 V phase transition and stabilizes the cathode interface. Finally, excellent 3 C (1 C = 274 mA g-1) fast charging performance is demonstrated with 73.8% capacity retention over 1000 cycles. Our findings shed new insights to the fundamental mechanism of interfacial ion/electron synergy in stabilizing and enhancing fast-charging cathode materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于醚的高电压锂金属电池(HV-LMB)由于其与Li金属阳极的高相容性而受到越来越多的关注。然而,醚基HV-LMB的商业化仍然面临许多挑战,包括短循环寿命,有限的安全性,和复杂的故障机制。在这篇评论中,我们讨论了用于HV-LMB的醚基电解质的最新进展,并提出了基于三个重要参数的电解质的系统设计原则:电化学性能,安全,和工业可扩展性。最后,我们总结了基于醚的HV-LMB的商业应用面临的挑战,并提出了未来发展的路线图。
    Ether-based high-voltage lithium metal batteries (HV-LMBs) are drawing growing interest due to their high compatibility with the Li metal anode. However, the commercialization of ether-based HV-LMBs still faces many challenges, including short cycle life, limited safety, and complex failure mechanisms. In this Review, we discuss recent progress achieved in ether-based electrolytes for HV-LMBs and propose a systematic design principle for the electrolyte based on three important parameters: electrochemical performance, safety, and industrial scalability. Finally, we summarize the challenges for the commercial application of ether-based HV-LMBs and suggest a roadmap for future development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在4.5V而不是普通的4.2V下稳定LiCoO2(LCO)对于高比容量是重要的。在这项研究中,我们开发了一种简单有效的方法来提高LiCoO2在高电压下的稳定性。经过简单的溶胶-凝胶法,我们通过随后的煅烧将三氟乙酸(TA)引入到LCO的表面。同时,TA与LCO表面残留的锂发生反应,进一步导致形成均匀的LiF纳米壳。LiF纳米壳能有效地抑制界面副反应,阻碍过渡金属溶解,从而在高工作电压下实现稳定的阴极-电解质界面。因此,LCO@LiF表现出更优异的循环稳定性,100次循环后的容量保持率为83.54%(容量保持率为43.3%),以及高速率性能。值得注意的是,LiF涂层赋予LCO优异的高温性能和优异的全电池性能。这项工作提供了一种简单有效的方法来制备在高电压下工作的稳定的LCO材料。
    Stabilizing LiCoO2 (LCO) at 4.5 V rather than the common 4.2 V is important for the high specific capacity. In this study, we developed a simple and efficient way to improve the stability of LiCoO2 at high voltages. After a simple sol-gel method, we introduced trifluoroacetic acid (TA) to the surface of LCO via an afterwards calcination. Meanwhile, the TA reacted with residual lithium on the surface of LCO, further leading to the formation of uniform LiF nanoshells. The LiF nanoshells could effectively restrict the interfacial side reaction, hinder the transition metal dissolution and thus achieve a stable cathode-electrolyte interface at high working-voltages. As a result, the LCO@LiF demonstrated a much superior cycling stability with a capacity retention ratio of 83.54% after 100 cycles compared with the bare ones (43.3% for capacity retention), as well as high rate performances. Notably, LiF coating layers endow LCO with excellent high-temperature performances and outstanding full-cell performances. This work provides a simple and effective way to prepare stable LCO materials working at a high voltage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号