High-throughput functional assays

  • 文章类型: Journal Article
    由于缺乏足够的临床病例报告,解释在人口规模测序工作中发现的大量罕见遗传变异并破译它们与人类健康和疾病的关联是一个严峻的挑战。克服这个问题的一个有希望的途径是深度突变扫描(DMS),在模型细胞系中引入和评估大规模遗传变异的方法。DMS允许对变体进行公正的调查,包括那些在临床报告中没有发现的,从而改善罕见疾病诊断。目前,限制DMS全部潜力的主要障碍是疾病机制特异性功能测定的可用性。因此,我们探索了适合检查广泛疾病机制的高通量功能方法.我们特别关注不需要机器人或自动化的方法,而是使用精心设计的分子工具将生物机制转化为易于检测的信号。如细胞存活率,荧光或耐药性。这里,我们的目标是弥合疾病相关检测方法与纳入DMS框架之间的差距.
    Interpreting the wealth of rare genetic variants discovered in population-scale sequencing efforts and deciphering their associations with human health and disease present a critical challenge due to the lack of sufficient clinical case reports. One promising avenue to overcome this problem is deep mutational scanning (DMS), a method of introducing and evaluating large-scale genetic variants in model cell lines. DMS allows unbiased investigation of variants, including those that are not found in clinical reports, thus improving rare disease diagnostics. Currently, the main obstacle limiting the full potential of DMS is the availability of functional assays that are specific to disease mechanisms. Thus, we explore high-throughput functional methodologies suitable to examine broad disease mechanisms. We specifically focus on methods that do not require robotics or automation but instead use well-designed molecular tools to transform biological mechanisms into easily detectable signals, such as cell survival rate, fluorescence or drug resistance. Here, we aim to bridge the gap between disease-relevant assays and their integration into the DMS framework.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    解释致病遗传变异仍然是人类遗传学和罕见疾病领域的挑战。进行深度突变扫描以绘制变体效应的当前成本和复杂性阻碍了所有疾病相关基因中变体的全基因组分辨率的众包方法。我们的框架,饱和诱变增强功能测定(SMuRF),通过模块化DMS组件来解决这些问题,提供简单且具有成本效益的饱和诱变,以及简化功能测定以增强对未解决变体的解释。将SMuRF应用于神经肌肉疾病基因FKRP和LARGE1,我们已经为超过99.8%的所有可能的编码单核苷酸变体(SNV)产生了功能评分,为营养不良症的临床变异解释提供了额外的证据。从SMuRF生成的数据可实现严重性预测,解析易受错义破坏的关键蛋白质结构区域,并为开发计算预测因子提供训练数据集。总之,我们的方法提供了一个框架,可以通过跨标准研究实验室进行众包实施的方式,实现对疾病基因的变异-功能洞察.
    Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号