Halorhodopsins

Halorhodopsins
  • 文章类型: Journal Article
    癫痫影响1%的普通人群,30%的患者对抗癫痫药物耐药。虽然光遗传学是一种有效的抗癫痫策略,照亮大脑深处区域的困难带来了翻译挑战。因此,强烈需要寻找替代光源。这里,我们开发了对pH敏感的抑制性发光蛋白(pHIL),由基于荧光素酶的光发生器组成的闭环化学光遗传学纳米机器,细胞内pH(E2GFP)的荧光传感器,和用于沉默神经元活动的光遗传学致动器(halorhodopsin)。在腔肠素的刺激下,pHIL经历荧光素酶和E2GFP之间的生物发光共振能量转移,在酸性pH条件下,激活halorhodopsin.在初级神经元中,pHIL感知与过度活跃相关的细胞内pH下降,并在光遗传学上中止了由惊厥剂引起的阵发性活动。pHIL在海马锥体神经元中的表达可有效减少毛果芸香碱诱导的强直阵挛性癫痫发作的持续时间和潜伏期,而不会影响更高的大脑功能。相同的治疗可有效地减少遗传性癫痫的鼠模型中的癫痫发作表现。结果表明,pHIL代表了治疗药物难治性癫痫的潜在有前途的闭环化学光遗传学策略。
    Epilepsy affects 1% of the general population and 30% of patients are resistant to antiepileptic drugs. Although optogenetics is an efficient antiepileptic strategy, the difficulty of illuminating deep brain areas poses translational challenges. Thus, the search of alternative light sources is strongly needed. Here, we develop pH-sensitive inhibitory luminopsin (pHIL), a closed-loop chemo-optogenetic nanomachine composed of a luciferase-based light generator, a fluorescent sensor of intracellular pH (E2GFP), and an optogenetic actuator (halorhodopsin) for silencing neuronal activity. Stimulated by coelenterazine, pHIL experiences bioluminescence resonance energy transfer between luciferase and E2GFP which, under conditions of acidic pH, activates halorhodopsin. In primary neurons, pHIL senses the intracellular pH drop associated with hyperactivity and optogenetically aborts paroxysmal activity elicited by the administration of convulsants. The expression of pHIL in hippocampal pyramidal neurons is effective in decreasing duration and increasing latency of pilocarpine-induced tonic-clonic seizures upon in vivo coelenterazine administration, without affecting higher brain functions. The same treatment is effective in markedly decreasing seizure manifestations in a murine model of genetic epilepsy. The results indicate that pHIL represents a potentially promising closed-loop chemo-optogenetic strategy to treat drug-refractory epilepsy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    跟踪细胞环境中单个氨基酸残基的微小变化的能力正在引起范式转变,以试图完全理解对其环境高度敏感的生物分子的反应。检测活细胞中的早期蛋白质动力学对于理解其机制至关重要,如光合蛋白质。这里,我们阐明了来自海洋细菌Nonlabensmarinus的微生物氯化物泵NmHR的光响应,位于活的大肠杆菌细胞膜上,在从纳秒到秒的时间范围内使用纳秒时间分辨UV/vis和IR吸收光谱。使用光诱导的时间分辨UV/vis和IR差异光谱法记录视网膜辅因子和周围载脂蛋白的瞬时结构变化。特别值得注意的是,我们已经解决了NmHR光循环过程中单个半胱氨酸残基的瞬时去质子化的动力学,这是细胞分子振动的歧管。这些发现具有很高的普遍相关性,鉴于光受体成功开发了光遗传学工具,可以使用光脉冲作为非侵入性触发因素来干扰活生物体中的酶和神经元途径。
    The ability to track minute changes of a single amino acid residue in a cellular environment is causing a paradigm shift in the attempt to fully understand the responses of biomolecules that are highly sensitive to their environment. Detecting early protein dynamics in living cells is crucial to understanding their mechanisms, such as those of photosynthetic proteins. Here, we elucidate the light response of the microbial chloride pump NmHR from the marine bacterium Nonlabens marinus, located in the membrane of living Escherichia coli cells, using nanosecond time-resolved UV/vis and IR absorption spectroscopy over the time range from nanoseconds to seconds. Transient structural changes of the retinal cofactor and the surrounding apoprotein are recorded using light-induced time-resolved UV/vis and IR difference spectroscopy. Of particular note, we have resolved the kinetics of the transient deprotonation of a single cysteine residue during the photocycle of NmHR out of the manifold of molecular vibrations of the cells. These findings are of high general relevance, given the successful development of optogenetic tools from photoreceptors to interfere with enzymatic and neuronal pathways in living organisms using light pulses as a noninvasive trigger.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    历史上,眶额叶皮层(OFC)涉及多种行为,从逆转学习和抑制控制到更复杂的奖励值和任务空间表示。虽然对OFC功能的现代解释集中在结果评估中的作用,这些认知过程通常需要有机体来抑制适应不良的反应或策略。在执行停止改变任务的大鼠中,来自OFC的单个单位记录表明,OFC对STOP试验反应强烈。为了研究OFC在停止改变性能中的作用,我们在OFC的兴奋性神经元中表达了halorhodopsin(eNpHR3.0),并在停止改变任务中测试了大鼠。先前的工作表明,OFC根据试验序列区分STOP试验(即,gS试验:STOP试验之前是GO和sS试验:STOP试验之前是STOP)。我们发现,表达eNpHR3.0的神经元的黄光激活仅在GO试验(gS试验)之后的STOP试验中显着降低了准确性。Further,OFC的光遗传学抑制加快了错误试验的反应时间。这表明OFC在抑制控制过程中起作用,并且在对OFC功能的现代解释中需要考虑这一角色。重要性声明眶额皮质(OFC)是一个高度相互联系的大脑区域,被认为对健康的认知功能至关重要。历史上,研究表明OFC抑制了不适当的行为,然而,最近的工作集中在其在指导基于价值的决策中的作用。结合光遗传学使用经典抑制控制任务的修改版本,我们表明,虽然对基于价值的决策很重要,OFC中兴奋性神经元的破坏也会损害抑制控制过程。这凸显了对OFC功能的理论解释以适应其在两种类型的认知过程中的作用的必要性。
    Historically, the orbitofrontal cortex (OFC) has been implicated in a variety of behaviors ranging from reversal learning and inhibitory control to more complex representations of reward value and task space. While modern interpretations of the OFC\'s function have focused on a role in outcome evaluation, these cognitive processes often require an organism to inhibit a maladaptive response or strategy. Single-unit recordings from the OFC in rats performing a stop-change task show that the OFC responds strongly to STOP trials. To investigate the role that the OFC plays in stop-change performance, we expressed halorhodopsin (eNpHR3.0) in excitatory neurons in the OFC and tested rats on the stop-change task. Previous work suggests that the OFC differentiates between STOP trials based on trial sequence (i.e., gS trials: STOP trials preceded by a GO vs sS trials: STOP trials preceded by a STOP). We found that yellow light activation of the eNpHR3.0-expressing neurons significantly decreased accuracy only on STOP trials that followed GO trials (gS trials). Further, optogenetic inhibition of the OFC speeded reaction times on error trials. This suggests that the OFC plays a role in inhibitory control processes and that this role needs to be accounted for in modern interpretations of OFC function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    全反式视网膜发色团的光异构化触发了微生物离子抽运视紫红质中的离子运输。了解电子激发态(S1)中的发色团结构可以了解光激发态势能表面上的结构演变。在这项研究中,我们检查了无性菌halorhodopsin(NpHR)中S1态发色团的结构,氯离子抽运的视紫红质,使用时间分辨共振拉曼光谱。S1态发色团的光谱模式与基态发色团的光谱模式完全不同,由于独特的振动特性和S1状态的结构。模式分配基于拉曼带的氘代位移和混合量子力学-分子力学计算的组合。目前的观察结果表明,π共轭系统中的键交替减弱。在NpHR中的S1态发色团的拉曼光谱中观察到强烈的氢平面外弯曲带,表示扭曲的多烯结构。在钠离子泵浦和质子泵浦视紫红质的拉曼光谱中观察到NpHR中S1态发色团的C=N/C=C和C-C拉伸模式的类似频移,这表明这些独特的特征对于离子泵浦视紫红质的S1状态是共同的。
    Photoisomerization of an all-trans-retinal chromophore triggers ion transport in microbial ion-pumping rhodopsins. Understanding chromophore structures in the electronically excited (S1) state provides insights into the structural evolution on the potential energy surface of the photoexcited state. In this study, we examined the structure of the S1-state chromophore in Natronomonas pharaonis halorhodopsin (NpHR), a chloride ion-pumping rhodopsin, using time-resolved resonance Raman spectroscopy. The spectral patterns of the S1-state chromophore were completely different from those of the ground-state chromophore, resulting from unique vibrational characteristics and the structure of the S1 state. Mode assignments were based on a combination of deuteration shifts of the Raman bands and hybrid quantum mechanics-molecular mechanics calculations. The present observations suggest a weakened bond alternation in the π conjugation system. A strong hydrogen-out-of-plane bending band was observed in the Raman spectra of the S1-state chromophore in NpHR, indicating a twisted polyene structure. Similar frequency shifts for the C═N/C═C and C-C stretching modes of the S1-state chromophore in NpHR were observed in the Raman spectra of sodium ion-pumping and proton-pumping rhodopsins, suggesting that these unique features are common to the S1 states of ion-pumping rhodopsins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    防御性响应在接近当前威胁时具有适应性,而在超过当前威胁时具有适应性。这里我们问黑质,一个一贯与奖励有关的地区,有必要在巴甫洛夫恐惧歧视中表现出适当的防御性反应。大鼠接受了用halorhodopsin或对照荧光团和双侧套圈植入物的尾黑质双侧转导。然后,大鼠通过行为学区分线索预测独特的足部电击概率(危险,p=1;不确定性,p=.25;和安全,p=0)。提示演示过程中的绿光照明(532nm)使halorhodopsin大鼠的防御性反应膨胀-通过抑制奖励寻求来测量-不确定性和安全性超出控制水平。提示显示以外的绿光照明对halorhodopsin或对照大鼠的反应没有影响。结果表明,尾质黑质提示活动对于抑制对非威胁和不确定威胁提示的防御性反应是必要的。(PsycInfo数据库记录(c)2023年APA,保留所有权利)。
    Defensive responding is adaptive when it approximates the current threat but maladaptive when it exceeds the current threat. Here we asked if the substantia nigra, a region consistently implicated in reward, is necessary to show appropriate levels of defensive responding in Pavlovian fear discrimination. Rats received bilateral transduction of the caudal substantia nigra with halorhodopsin or a control fluorophore and bilateral ferrule implants. Rats then behaviorally discriminated cues predicting unique foot shock probabilities (danger, p = 1; uncertainty, p = .25; and safety, p = 0). Green-light illumination (532 nm) during cue presentation inflated defensive responding of halorhodopsin rats-measured by suppression of reward seeking-to uncertainty and safety beyond control levels. Green-light illumination outside of cue presentation had no impact on halorhodopsin or control rat responding. The results reveal caudal substantia nigra cue activity is necessary to inhibit defensive responding to nonthreatening and uncertain threat cues. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们最近报道了光遗传学氯离子泵的强烈激活,halorhodopsin导致K+离子二次重新分布到细胞中,通过音调打开,\"leak\"K+通道。在这里,我们表明,这种效应不是唯一的卤化视紫红质,但也看到与另一个电离子泵的激活,古生视紫红质.然而,两种视蛋白在细胞外钾反弹上升的大小不同,[K+]o,激活结束后,与古生视紫红质活化相比,这一点要大得多。多元线性回归模型表明,[K]o中的照明后激增的方差既可以通过前面的大小来解释,光照诱导的[K+]o下降以及视蛋白的类型。这些数据为以下假设提供了额外的支持:细胞的强烈氯化物负载,如在GABA能突触轰击的强烈爆发后自然发生的,或人工激活后的盐视紫红质,然后挤出耦合在一起的Cl-和K+。我们针对癫痫样事件发作时发生的[K]o上升模式进行讨论。
    We recently reported that strong activation of the optogenetic chloride pump, halorhodopsin leads to a secondary redistribution of K+ ions into the cell, through tonically open, \"leak\" K+ channels. Here we show that this effect is not unique to halorhodopsin but is also seen with activation of another electrogenic ion pump, archaerhodopsin. The two opsins differ however in the size of the rebound rise in extracellular potassium, [K+ ]o , after the end of activation, which is far larger with halorhodopsin than for archaerhodopsin activation. Multiple linear regression modeling indicates that the variance in the postillumination surge in [K+ ]o was explained both by the size of the preceding, illumination-induced drop in [K+ ]o and also by the type of opsin. These data provide additional support for the hypothesis that intense chloride-loading of cells, as occurs naturally following intense bursts of GABAergic synaptic bombardment, or artificially following halorhodopsin activation, is followed by extrusion of both Cl- and K+ coupled together. We discuss this with respect to the pattern of [K+ ]o rise that occurs at the onset of seizure-like events.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    盐藻的细胞膜含有视网膜结合的光感受器,感觉视紫红质II(HsSRII),加上其同源换能器(HsHtrII),允许对较短波长的光进行排斥趋光行为。先前对法氏藻(NpSRII)的SRII的研究指出,Thr204NpSRII和Tyr174NpSRII之间的氢键相互作用在从SRII到HtrII的信号传递中的重要性。这里,我们通过替换对应于Thr204NpSRII和Tyr174NpSRII的HsSRII中的残基研究了对趋光功能的影响。而任一残基的替换改变了光循环动力学,在Ser201HsSRII和Tyr171HsSRII引入任何突变并不能消除负趋光功能.这些观察结果暗示存在与NpSRII-NpHtrII不同的疏水性信号转导的未知分子机制的可能性。
    The cell membrane of Halobacterium salinarum contains a retinal-binding photoreceptor, sensory rhodopsin II (HsSRII), coupled with its cognate transducer (HsHtrII), allowing repellent phototaxis behavior for shorter wavelength light. Previous studies on SRII from Natronomonas pharaonis (NpSRII) pointed out the importance of the hydrogen bonding interaction between Thr204NpSRII and Tyr174NpSRII in signal transfer from SRII to HtrII. Here, we investigated the effect on phototactic function by replacing residues in HsSRII corresponding to Thr204NpSRII and Tyr174NpSRII . Whereas replacement of either residue altered the photocycle kinetics, introduction of any mutations at Ser201HsSRII and Tyr171HsSRII did not eliminate negative phototaxis function. These observations imply the possibility of the presence of an unidentified molecular mechanism for photophobic signal transduction differing from NpSRII-NpHtrII.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:长期使用左旋多巴治疗帕金森病(PD)往往受到运动并发症发展的阻碍,包括左旋多巴诱导的运动障碍(LID)。黑质网状结构(SNr)和苍白球内段(GPi)是基底神经节的输出核。SNr和GPi活性的失调有助于PD病理生理学和LID。
    目的:本研究的目的是确定在小鼠模型中SNrGABA能神经元和SNr投射对足桥脑核(PPN)的直接调节是否调节PD症状和LID。
    方法:我们在Vgat-IRES-Cre小鼠的SNrGABA能神经元中选择性表达了Cre重组酶激活的通道视紫红质2(ChR2)或卤代视紫红质腺相关病毒2(AAV2)载体。6-羟基多巴胺PD模型中的Cre小鼠,以研究SNr神经元的直接光遗传调节或其对PPIDPD表达的投射是否前爪踏步任务,鼠标LID评定量表,和开场运动用于评估运动障碍和LID以测试SNr调制的效果。
    结果:通过用卤化视紫红质抑制SNr神经元活性,运动障碍得到改善。通过使用ChR2增加SNr神经元活性,LID显着降低,而ChR2不会干扰左旋多巴的抗运动作用。SNr投射中ChR2的光学刺激对PPN的直接刺激。
    结论:SNrGABA能神经元的调节以与基底神经节回路速率模型一致的方式改变运动障碍和LID表达。此外,从SNr到PPN的投射可能介导增加SNr神经元活性的抗运动障碍作用,确定PPN在LID中的潜在新作用。©2023作者。由WileyPeriodicalsLLC代表国际帕金森症和运动障碍协会出版的运动障碍。
    Long-term use of levodopa for Parkinson\'s disease (PD) treatment is often hindered by development of motor complications, including levodopa-induced dyskinesia (LID). The substantia nigra pars reticulata (SNr) and globus pallidus internal segment (GPi) are the output nuclei of the basal ganglia. Dysregulation of SNr and GPi activity contributes to PD pathophysiology and LID.
    The objective of this study was to determine whether direct modulation of SNr GABAergic neurons and SNr projections to the pedunculopontine nucleus (PPN) regulates PD symptoms and LID in a mouse model.
    We expressed Cre-recombinase activated channelrhodopsin-2 (ChR2) or halorhodopsin adeno-associated virus-2 (AAV2) vectors selectively in SNr GABAergic neurons of Vgat-IRES-Cre mice in a 6-hydroxydopamine model of PD to investigate whether direct optogenetic modulation of SNr neurons or their projections to the PPN regulates PD symptoms and LID expression. The forepaw stepping task, mouse LID rating scale, and open-field locomotion were used to assess akinesia and LID to test the effect of SNr modulation.
    Akinesia was improved by suppressing SNr neuron activity with halorhodopsin. LID was significantly reduced by increasing SNr neuronal activity with ChR2, which did not interfere with the antiakinetic effect of levodopa. Optical stimulation of ChR2 in SNr projections to the PPN recapitulated direct SNr stimulation.
    Modulation of SNr GABAergic neurons alters akinesia and LID expression in a manner consistent with the rate model of basal ganglia circuitry. Moreover, the projections from SNr to PPN likely mediate the antidyskinetic effect of increasing SNr neuronal activity, identifying a potential novel role for the PPN in LID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    决策是一个复杂的认知过程,它招募了一个分布式的大脑区域网络,包括基底外侧杏仁核(BLA)和伏隔核壳(NAcSh)。最近的工作表明,这些结构之间的交流,以及在NAcSh中表达多巴胺D2受体(D2R)的细胞的活性,对于某些形式的决策是必要的;然而,在面临惩罚风险的决策过程中,该电路和细胞群的贡献尚不清楚。当前的实验在涉及惩罚风险的决策任务中使用大鼠的电路和细胞类型特异性光遗传学方法解决了这个问题。在实验1中,Long-Evans大鼠接受了BLA内注射的卤化视紫红质或mCherry(对照),在实验2中,D2-Cre转基因大鼠接受了NAcSh内注射的Cre依赖性卤化视紫红质或mCherry。在两个实验中,将光纤植入NAcSh中。在决策任务的培训之后,在决策过程的不同阶段,BLA→NAcSh或D2R表达神经元受到光遗传学抑制。在审议期间(试验开始和选择之间的时间)抑制BLA→NAcSh增加了对大,风险回报(增加冒险)。同样,在大的输送过程中抑制,惩罚奖励增加了冒险,但只有男性。在审议期间抑制NAcSh中表达D2R的神经元增加了风险承担。相比之下,在传递小的过程中抑制这些神经元,安全回报减少了冒险。这些发现扩展了我们对冒险神经动力学的认识,在决策过程中揭示性别依赖性回路募集和选择性细胞群的可解离活性。重要性声明:直到最近,可用于大鼠的工具限制了以电路和细胞特异性方式解剖涉及惩罚风险(冒险)的决策的神经基础的能力。这里,我们利用光遗传学的时间精度,和转基因大鼠一起,探索特定电路和细胞群体对基于风险的决策的不同阶段的贡献。我们的发现表明,BLA→NAcSh以性别依赖的方式参与了对惩罚奖励的评估。Further,表达NAcShD2R的神经元对冒险做出独特的贡献,在决策过程中各不相同。这些发现促进了我们对决策的神经原理的理解,并提供了对风险承担如何在神经精神疾病中受损的见解。
    Decision making is a complex cognitive process that recruits a distributed network of brain regions, including the basolateral amygdala (BLA) and nucleus accumbens shell (NAcSh). Recent work suggests that communication between these structures, as well as activity of cells expressing dopamine (DA) D2 receptors (D2R) in the NAcSh, are necessary for some forms of decision making; however, the contributions of this circuit and cell population during decision making under risk of punishment are unknown. The current experiments addressed this question using circuit-specific and cell type-specific optogenetic approaches in rats during a decision making task involving risk of punishment. In experiment 1, Long-Evans rats received intra-BLA injections of halorhodopsin or mCherry (control) and in experiment 2, D2-Cre transgenic rats received intra-NAcSh injections of Cre-dependent halorhodopsin or mCherry. Optic fibers were implanted in the NAcSh in both experiments. Following training in the decision making task, BLA→NAcSh or D2R-expressing neurons were optogenetically inhibited during different phases of the decision process. Inhibition of the BLA→NAcSh during deliberation (the time between trial initiation and choice) increased preference for the large, risky reward (increased risk taking). Similarly, inhibition during delivery of the large, punished reward increased risk taking, but only in males. Inhibition of D2R-expressing neurons in the NAcSh during deliberation increased risk taking. In contrast, inhibition of these neurons during delivery of the small, safe reward decreased risk taking. These findings extend our knowledge of the neural dynamics of risk taking, revealing sex-dependent circuit recruitment and dissociable activity of selective cell populations during decision making.SIGNIFICANCE STATEMENT Until recently, the ability to dissect the neural substrates of decision making involving risk of punishment (risk taking) in a circuit-specific and cell-specific manner has been limited by the tools available for use in rats. Here, we leveraged the temporal precision of optogenetics, together with transgenic rats, to probe contributions of a specific circuit and cell population to different phases of risk-based decision making. Our findings reveal basolateral amygdala (BLA)→nucleus accumbens shell (NAcSh) is involved in evaluation of punished rewards in a sex-dependent manner. Further, NAcSh D2 receptor (D2R)-expressing neurons make unique contributions to risk taking that vary across the decision making process. These findings advance our understanding of the neural principles of decision making and provide insight into how risk taking may become compromised in neuropsychiatric diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    离子进出神经元的运动可以对邻近细胞产生显著影响。在这里,我们报告了光遗传学氯化物泵激活的几个实验重要后果,Halorhodopsin.我们记录了细胞外K+浓度,[K+]额外,在由成年小鼠(两性)制备的新皮质脑切片中,该切片在锥体细胞中表达Halorhodopsin。强烈的Halorhodopsin激活诱导[K+]额外的显著下降,持续照明的持续时间。K+通道的药理学阻断降低了这种下降的幅度,表明它代表了在超极化期间K+重新分布到细胞中。因此,Halorhodopsin直接驱动两个Cl-的向内运动,其次是K+。当照明周期结束时,细胞外[K+]的反弹在几十秒内发展,部分反映了先前K+的向内再分配,但另外,由氯化钾联合转运蛋白清除Cl-与K+偶联,KCC2.在光活化过程中,[K]额外的下降也导致不表达Halorhodopsin的其他细胞的小(2-3mV)超极化。因此其激活具有直接和间接的抑制作用。最后,我们表明,持续强烈激活的Halorhodopsin导致皮层扩散去极化(CSDs),在体外和体内,这种触发CSD的新方法是不寻常的,因为事件可以在实际照明期间发生,当神经元被超极化并且[K+]extra很低时。我们建议,这种根本不同的CSD实验模型将开辟新的研究途径,以解释它们是如何自然发生的。重要声明:Halorhodopsin是一种光活化的电解氯化物泵,已广泛用于光遗传学抑制神经元。这里,我们证明了其使用的三个以前未被识别的后果:1.强烈的活化导致K+离子二次移动到细胞中。2.细胞外[K+]的下降也降低了其他细胞的兴奋性,非表达细胞。3.强烈的持续性Halorhodopsin激活可触发皮层扩散去极化(CSD)。当神经元超极化并且细胞外[K]低时,可以发生Halorhodsin诱导的CSD。这与最广泛使用的触发具有高[K+]的CSD的实验模型形成对比。两种型号,然而,与以下假设一致:CSD是在净离子向内运动到主要神经元群中之后出现的。
    The movement of ions in and out of neurons can exert significant effects on neighboring cells. Here we report several experimentally important consequences of activation of the optogenetic chloride pump, halorhodopsin. We recorded extracellular K+ concentration ([K+]extra) in neocortical brain slices prepared from young adult mice (both sexes) which express halorhodopsin in pyramidal cells. Strong halorhodopsin activation induced a pronounced drop in [K+]extra that persisted for the duration of illumination. Pharmacological blockade of K+ channels reduced the amplitude of this drop, indicating that it represents K+ redistribution into cells during the period of hyperpolarization. Halorhodopsin thus drives the inward movement of both Cl- directly, and K+ secondarily. When the illumination period ended, a rebound surge in extracellular [K+] developed over tens of seconds, partly reflecting the previous inward redistribution of K+, but additionally driven by clearance of Cl- coupled to K+ by the potassium-chloride cotransporter, KCC2. The drop in [K+]extra during light activation leads to a small (2-3 mV) hyperpolarization also of other cells that do not express halorhodopsin. Its activation therefore has both direct and indirect inhibitory effects. Finally, we show that persistent strong activation of halorhodopsin causes cortical spreading depolarizations (CSDs), both in vitro and in vivo This novel means of triggering CSDs is unusual, in that the events can arise during the actual period of illumination, when neurons are being hyperpolarized and [K+]extra is low. We suggest that this fundamentally different experimental model of CSDs will open up new avenues of research to explain how they occur naturally.SIGNIFICANCE STATEMENT Halorhodopsin is a light-activated electrogenic chloride pump, which has been widely used to inhibit neurons optogenetically. Here, we demonstrate three previously unrecognized consequences of its use: (1) intense activation leads to secondary movement of K+ ions into the cells; (2) the resultant drop in extracellular [K+] reduces excitability also in other, nonexpressing cells; and (3) intense persistent halorhodopsin activation can trigger cortical spreading depolarization (CSD). Halorhodopsin-induced CSDs can occur when neurons are hyperpolarized and extracellular [K+] is low. This contrasts with the most widely used experimental models that trigger CSDs with high [K+]. Both models, however, are consistent with the hypothesis that CSDs arise following net inward ionic movement into the principal neuron population.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号