Gp37

Gp37
  • 文章类型: Journal Article
    线粒体在细胞内能量代谢中起重要作用。这项研究描述了Bombyxmori核型多角体病毒(BmNPV)GP37(BmGP37)在宿主线粒体中的参与。在这里,比较了通过二维凝胶电泳从BmNPV感染或模拟感染的细胞中分离出的与宿主线粒体相关的蛋白质。通过液相色谱-质谱分析,将病毒感染细胞中的一种线粒体相关蛋白鉴定为BmGP37。此外,产生了BmGP37抗体,可以与BmNPV感染的BmN细胞中的BmGP37特异性反应。Western印迹实验表明,BmGP37在感染后18h表达,并被证实为线粒体相关蛋白。免疫荧光分析表明,在BmNPV感染期间,BmGP37定位于宿主线粒体。此外,蛋白质印迹分析显示,BmGP37是BmNPV的闭塞衍生病毒(ODV)的新组分蛋白。目前的结果表明,BmGP37是ODV相关蛋白之一,在BmNPV感染过程中可能在宿主线粒体中起重要作用。
    Mitochondria play an essential role in intracellular energy metabolism. This study described the involvement of Bombyx mori nucleopolyhedrovirus (BmNPV) GP37 (BmGP37) in host mitochondria. Herein, the proteins associated with host mitochondria isolated from BmNPV-infected or mock-infected cells by two-dimensional gel electrophoresis were compared. One mitochondria-associated protein in virus-infected cells was identified as BmGP37 by liquid chromatography-mass spectrometry analysis. Furthermore, the BmGP37 antibodies were generated, which could react specifically with BmGP37 in the BmNPV-infected BmN cells. Western blot experiments showed that BmGP37 was expressed at 18 h post-infection and was verified as a mitochondria-associated protein. Immunofluorescence analysis demonstrated that BmGP37 localized to the host mitochondria during BmNPV infection. Furthermore, western blot analysis revealed that BmGP37 is a novel component protein of the occlusion-derived virus (ODV) of BmNPV. The present results indicated that BmGP37 is one of the ODV-associated proteins and may have important roles in host mitochondria during BmNPV infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自噬是细胞维持稳态的保守过程。然而,自噬异常可导致各种疾病的发展,包括癌症.禽白血病病毒J亚组(ALV-J)是一种致癌的外源性逆转录病毒,在易感宿主中诱导严重的免疫抑制和肿瘤的发展。这项研究首次揭示了ALV-J通过包膜蛋白gp37抑制自噬。在这里,我们证明包膜蛋白gp37阻断自噬体与溶酶体的融合并诱导不完全的自噬。有趣的是,另外的实验表明,宿主伴侣蛋白TCP1也是自噬抑制剂,并阻断DF-1细胞的自噬流过程。通过免疫沉淀试验,我们发现TCP1与gp37相互作用。此外,TCP1敲低也消除了gp37介导的DF-1细胞中自噬的抑制。此外,TCP1通过激活AKT促进DF-1细胞中的病毒复制来介导ALV-J的gp37抑制自噬。
    Autophagy is a conserved process by which cells maintain homeostasis. However, abnormalities in autophagy can lead to the development of various diseases, including cancer. Avian leukosis virus Subgroup J (ALV-J) is an oncogenic exogenous retrovirus, which induces severe immunosuppression and development of tumors in susceptible host. This study reveals for the first time that ALV-J inhibits autophagy through the envelope protein gp37. Here we demonstrate that envelope protein gp37 blocks the fusion of autophagosomes to lysosomes and induces incomplete autophagy. Interestingly, additional experiments revealed that the host chaperone protein TCP1 is also an autophagy inhibitor and blocking the process of autophagic flow in DF-1 cells. Through immunoprecipitation assays, we found that TCP1 interacts with gp37. In addition, TCP1 knockdown also abolished gp37-mediated inhibition of autophagy in DF-1 cells. Furthermore, TCP1 mediates gp37 of ALV-J to inhibit autophagy through activating AKT for promoting viral replication in DF-1 cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The increasing emergence of multi-drug resistant Escherichia coli (E. coli) has become a global concern, primarily due to the limitation of antimicrobial treatment options. Phage therapy has been considered as a promising alternative for treating infections caused by multi-drug resistant E. coli. However, the application of phages as a promising antimicrobial agent is limited by their narrow host range and specificity. In this research, a recombinant T4-like phage, named WGqlae, has been obtained by changing the receptor specificity determinant region of gene 37, using a homologous recombination platform of T4-like phages established by our laboratory previously. The engineered phage WGqlae can lyse four additional hosts, comparing to its parental phages WG01 and QL01. WGqlae showed similar characteristics, including thermo and pH stability, optimal multiplicity of infection and one-step growth curve, to the donor phage QL01. In addition, sequencing results showed that gene 37 of recombinant phage WGqlae had genetically stable even after 20 generations. In planktonic test, phage WGqlae had significant antimicrobial effects on E. coli DE192 and DE205B. The optical density at 600 nm (OD600) of E. coli in phage WGqlae treating group was significantly lower than that of the control group (P < 0.01). Besides, phage WGqlae demonstrated an obvious inhibitory effect on the biofilm formation and the clearance of mature biofilms. Our study suggested that engineered phages may be promising candidates for future phage therapy applications against pathogenic E. coli in planktonic and biofilm forms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Different from other subgroups of avian leukosis viruses (ALVs), ALV-J is highly pathogenic. It is the main culprit causing myeloid leukemia and hemangioma in chickens. The distinctiveness of the env gene of ALV-J, with low homology to those of other ALVs, is linked to its unique pathogenesis, but the underlying mechanism remains unclear. Previous studies show that env of ALV-J can be grouped into three species based on the tyrosine motifs in the cytoplasmic domain (CTD) of Gp37, i.e., the inhibitory, bifunctional, and active groups. To explore whether the C terminus or the tyrosine motifs in the CTD of Gp37 affect the pathogenicity of ALV-J, a set of ALV-J infectious clones containing different C termini of Gp37 or the mutants at the tyrosine sites were tested in vitro and in vivo Viral growth kinetics indicated not only that ALV-J with active env is the fastest in replication and ALV-J with inhibitory env is the lowest but also that the tyrosine sites essentially affected the replication of ALV-J. Moreover, in vivo studies demonstrated that chickens infected by ALV-J with active or bifunctional env showed higher viremia, cloacal viral shedding, and viral tissue load than those infected by ALV-J with inhibitory env Notably, the chickens infected by ALV-J with active or bifunctional env showed significant loss of body weight compared with the control chickens. Taken together, these findings reveal that the C terminus of Gp37 plays a vital role in ALV-J pathogenesis, and change from inhibitory env to bifunctional or active env increases the pathogenesis of ALV-J.IMPORTANCE ALV-J can cause severe immunosuppression and myeloid leukemia in infected chickens. However, no vaccine or antiviral drug is available against ALV-J, and the mechanism for ALV-J pathogenesis needs to be elucidated. It is generally believed that gp85 and LTR of ALV contribute to its pathogenesis. Here, we found that the C terminus and the tyrosine motifs (YxxM, ITIM, and ITAM-like) in the CTD of Gp37 of ALV-J could affect the pathogenicity of ALV-J in vitro and in vivo The pathogenicity of ALV-J with Gp37 containing ITIM only was significantly less than ALV-J with Gp37 containing both YxxM and ITIM and ALV-J with Gp37 containing both YxxM and ITAM-like. This study highlights the vital role of the C terminus of Gp37 in the pathogenesis of ALV-J and thus provides a new perspective to elucidate the interaction between ALV-J and its host and a molecular basis to develop efficient strategies against ALV-J.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: Baculoviruses provide long-lasting control of crop pests and are harmless to humans and non-target animals, making them attractive bioinsecticides. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has a wide-host range and is one such commercial bioinsecticide, but its low infectivity to older larvae and less-sensitive species precludes its large-scale application. We sought to improve the infectivity of AcMNPV.
    RESULTS: Two enhancing factors, the truncated enhancin from Agrotis segetum granulovirus and GP37 from Cydia pomonella granulovirus, were expressed in fusion with the N-terminal and middle domain of the polyhedrin envelope protein of AcMNPV. Western blotting and immunoelectron microscopy analysis indicated that the enhancing factors were expressed on the occlusion bodies of the resulting AcMNPV variants. Bioassays showed that the median lethal doses of the recombinant viruses were 3.9-fold to 7.4-fold lower than those of the wild-type virus against the second and fourth instar of Spodoptera exigua larvae. The yields of occlusion bodies from the two recombinants in S. exigua larvae were comparable with those of the wild-type virus both in vitro and in vivo. Further bioassays showed that the AcMNPV variants fusing the enhancing factors were incapable of infecting the second instar larvae of S. litura, Helicoverpa armigera, and Pyrausta nubilalis, which were not sensitive to the wild-type AcMNPV.
    CONCLUSIONS: These genetically modified AcMNPV variants exhibited an enhanced infectivity and may offer better baculovirus control of crop pests. © 2019 Society of Chemical Industry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Cydiapomonella颗粒病毒(CpGV)GP37对核多角体病毒(NPV)的感染性具有协同作用,然而,采用的机制尚不清楚。在这项研究中,体外和体内结合试验表明,GP37有效地结合到甜菜夜蛾幼虫的中肠围食膜(PM)上。用GP37处理导致PM的压实结构的损坏和PM穿孔的产生,以及PM渗透率的增强。qPCR结果进一步证明GP37增加了闭塞衍生的病毒体(ODV)穿过PM的能力。R18标记实验表明,GP37还促进了ODV与昆虫中肠上皮的融合。总之,我们目前的研究结果表明,GP37对NPV感染性的协同机制可能涉及两个部分。GP37在结合后损坏了PM的完整性,这提高了PM的渗透性,增加了ODV穿过PM的能力,最终促进ODV到达中肠。此外,GP37促进ODV与昆虫中肠上皮的融合。我们的数据扩展了对杆状病毒协同因子使用机制的理解,并为开发高效杆状病毒杀虫剂提供了基础。
    The Cydia pomonella granulovirus (CpGV) GP37 has synergistic effects on the infectivity of nucleopolyhedroviruses (NPVs), however, the mechanism employed is unclear. In this study, in vitro and in vivo binding assays indicated that GP37 efficiently bound to the midgut peritrophic membrane (PM) of Spodoptera exigua larvae. Treatment with GP37 led to the damage of the PM\'s compacted structure and the generation of the PM perforations, and the enhancement of the PM\'s permeability. qPCR results further demonstrated that GP37 increased the ability of occlusion-derived virions (ODV) to cross the PM. R18-labeling experiments exhibited that GP37 also promoted the fusion of ODVs and insect midgut epithelia. Altogether, our present results revealed that the synergistic mechanism of GP37 to the infectivity of NPV might involve two parts. GP37 damaged the integrity of the PM after binding, which enhanced the PM\'s permeability and increased the ability of ODVs to cross the PM, finally facilitating the ODVs reaching the midgut. In addition, GP37 promoted the fusion of ODVs and insect midgut epithelia. Our data expand the understanding of the mechanism used by baculovirus synergistic factors and provide a foundation for the development of high-efficiency baculoviral insecticides.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The use of phages as antibacterial agents is limited by their generally narrow host ranges. The aim of this study was to make a T4-like phage, WG01, obtain the host range of another T4-like phage, QL01, by replacing its host-determinant gene region with that of QL01. This process triggered a direct expansion of the WG01 host range. The offspring of WG01 obtained the host ranges of both QL01 and WG01, as well as the ability to infect eight additional host bacteria in comparison to the wild-type strains. WQD had the widest host range; therefore, the corresponding fragments, named QD, could be used for constructing a homologous sequence library. Moreover, after a sequencing analysis of gene 37, we identified two different mechanisms responsible for the expanded host range: (i) the first generation of WG01 formed chimeras without mutations, and (ii) the second generation of WG01 mutants formed from the chimeras. The expansion of the host range indicated that regions other than the C-terminal region may indirectly change the receptor specificity by altering the supportive capacity of the binding site. Additionally, we also found the novel means by which subsequent generations expanded their host ranges, namely, by exchanging gene 37 to acquire a wider temperature range for lysis. The method developed in this work offers a quick way to change or expand the host range of a phage. Future clinical applications for screening phages against a given clinical isolate could be achieved after acquiring more suitable homologous sequences.IMPORTANCE T4-like phages have been established as safe in numerous phage therapy applications. The primary drawbacks to the use of phages as therapeutic agents include their highly specific host ranges. Thus, changing or expanding the host range of T4-like phages is beneficial for selecting phages for phage therapy. In this study, the host range of the T4-like phage WG01 was expanded using genetic manipulation. The WG01 derivatives acquired a novel means of expanding their host ranges by acquiring a wider temperature range for lysis. A region was located that had the potential to be used as a sequence region for homologous sequence recombination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The relatively low infectivity of baculoviruses to their host larvae limits their use as insecticidal agents on a larger scale. In the present study, a novel strategy was developed to efficiently embed foreign proteins into Autographa californica multiple nucleopolyhedrovirus (AcMNPV) occlusion bodies (OBs) to achieve stable expression of foreign proteins and to improve viral infectivity. A recombinant AcMNPV bacmid was constructed by expressing the 150-amino-acid (aa) N-terminal segment of polyhedrin under the control of the p10 promoter and the remaining C-terminal 95-aa segment under the control of the polyhedrin promoter. The recombinant virus formed OBs in Spodoptera frugiperda 9 cells, in which the occlusion-derived viruses were embedded in a manner similar to that for wild-type AcMNPV. Next, the 95-aa polyhedrin C terminus was fused to enhanced green fluorescent protein, and the recombinant AcMNPV formed fluorescent green OBs and was stably passaged in vitro and in vivo The AcMNPV recombinants were further modified by fusing truncated Agrotis segetum granulovirus enhancin or truncated Cydia pomonella granulovirus ORF13 (GP37) to the C-terminal 95 aa of polyhedrin, and both recombinants were able to form normal OBs. Bioactivity assays indicated that the median lethal concentrations of these two AcMNPV recombinants were 3- to 5-fold lower than that of the control virus. These results suggest that embedding enhancing factors in baculovirus OBs by use of this novel technique may promote efficient and stable foreign protein expression and significantly improve baculovirus infectivity.IMPORTANCE Baculoviruses have been used as bioinsecticides for over 40 years, but their relatively low infectivity to their host larvae limits their use on a larger scale. It has been reported that it is possible to improve baculovirus infectivity by packaging enhancing factors within baculovirus occlusion bodies (OBs); however, so far, the packaging efficiency has been low. In this article, we describe a novel strategy for efficiently embedding foreign proteins into AcMNPV OBs by expressing N- and C-terminal (dimidiate) polyhedrin fragments (150 and 95 amino acids, respectively) as fusions to foreign proteins under the control of the p10 and polyhedrin promoters, respectively. When this strategy was used to embed an enhancing factor (enhancin or GP37) into the baculovirus OBs, 3- to 5-fold increases in baculoviral infectivity were observed. This novel strategy has the potential to create an efficient protein expression system and a highly efficient virus-based system for insecticide production in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号