Glucose-stimulated insulin secretion

葡萄糖刺激的胰岛素分泌
  • 文章类型: Journal Article
    与Ras相关的Rap1AGTP酶与胰腺β细胞胰岛素分泌有关,并受到cAMP传感器Epac2的刺激,后者是鸟嘌呤交换因子和Rap1GTP酶的激活剂。在这项研究中,我们使用nanoLC-ESI-MS/MS检查了C57BL/6Rap1A缺陷型(Null)和对照野生型(WT)小鼠胰腺的差异蛋白质组学谱,以评估可能参与胰岛素调节的Rap1A靶标.我们在两组中鉴定了77个重叠的标识符蛋白,在Null中具有8种不同的标识符蛋白,而在WT小鼠胰腺中具有56种不同的标识符蛋白。功能富集分析显示8种空独特蛋白中的4种,ERO1样蛋白β(Ero1β),磷酸三糖异构酶(TP1),14-3-3蛋白γ,和激肽释放酶-1,完全参与胰岛素的生物合成,在胰岛素代谢中起作用。具体来说,Null和WT胰腺中Ero1lβ和TP1的mRNA表达显着增加(p<0.05)。Rap1A缺乏在葡萄糖攻击的前15-30分钟内显着影响葡萄糖耐量,但对胰岛素敏感性没有影响。对分离的空胰岛的离体葡萄糖刺激的胰岛素分泌(GSIS)研究显示GSIS明显受损。此外,在GSIS受损的胰岛中,与WT相比,cAMP-Epac2-Rap1A途径显著受损。总之,这些研究强调了Rap1AGTP酶在胰腺生理功能中的重要作用。
    Ras-related Rap1A GTPase is implicated in pancreas β-cell insulin secretion and is stimulated by the cAMP sensor Epac2, a guanine exchange factor and activator of Rap1 GTPase. In this study, we examined the differential proteomic profiles of pancreata from C57BL/6 Rap1A-deficient (Null) and control wild-type (WT) mice with nanoLC-ESI-MS/MS to assess targets of Rap1A potentially involved in insulin regulation. We identified 77 overlapping identifier proteins in both groups, with 8 distinct identifier proteins in Null versus 56 distinct identifier proteins in WT mice pancreata. Functional enrichment analysis showed four of the eight Null unique proteins, ERO1-like protein β (Ero1lβ), triosephosphate isomerase (TP1), 14-3-3 protein γ, and kallikrein-1, were exclusively involved in insulin biogenesis, with roles in insulin metabolism. Specifically, the mRNA expression of Ero1lβ and TP1 was significantly (p < 0.05) increased in Null versus WT pancreata. Rap1A deficiency significantly affected glucose tolerance during the first 15-30 min of glucose challenge but showed no impact on insulin sensitivity. Ex vivo glucose-stimulated insulin secretion (GSIS) studies on isolated Null islets showed significantly impaired GSIS. Furthermore, in GSIS-impaired islets, the cAMP-Epac2-Rap1A pathway was significantly compromised compared to the WT. Altogether, these studies underscore an essential role of Rap1A GTPase in pancreas physiological function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    雷帕霉素的机制靶标(mTOR)途径的过度激活促进衰老和与年龄相关的疾病如2型糖尿病。此外,胰岛的再生潜能随着衰老而恶化。然而,mTOR在胰岛细胞代谢应激促进衰老中的作用及其与电生理方面的相关性尚不清楚。这里,我们调查了表明衰老的参数是否在体外通过葡萄糖毒性在小鼠胰岛细胞中诱导,以及mTOR抑制是否对此起保护作用。胰岛细胞在暴露于葡萄糖毒性72小时后,衰老相关的β-半乳糖苷酶(SA-β-gal)活性显着增加(〜76%)。葡萄糖毒性在72小时内不会显着影响p16INK4a蛋白,但p16INK4a水平在7天潜伏期后显著增加。低雷帕霉素浓度(1nM)的mTOR抑制完全阻止了葡萄糖毒性介导的SA-β-gal和p16INK4a的增加。在功能层面,活性氧,钙稳态,电活动受到葡萄糖毒性的干扰,雷帕霉素无法预防这种情况。相比之下,雷帕霉素通过改变Vamp2和Snap25基因的mRNA水平显着减弱由葡萄糖毒性促进的胰岛素分泌过多,与胰岛素胞吐有关。我们的数据表明,葡萄糖毒性对胰岛细胞衰老的影响以及mTOR抑制对衰老标志物的减少,这与保持胰岛的再生潜力有关。降低mTOR对暴露于葡萄糖毒性的胰岛细胞的影响可减弱胰岛素分泌过多,但不足以防止电生理干扰,表明mTOR独立机制的参与。
    An over-activation of the mechanistic target of rapamycin (mTOR) pathway promotes senescence and age-related diseases like type 2 diabetes. Besides, the regenerative potential of pancreatic islets deteriorates with aging. Nevertheless, the role of mTOR on senescence promoted by metabolic stress in islet cells as well as its relevance for electrophysiological aspects is not yet known. Here, we investigated whether parameters suggested to be indicative for senescence are induced in vitro in mouse islet cells by glucotoxicity and if mTOR inhibition plays a protective role against this. Islet cells exhibit a significant increase (~ 76%) in senescence-associated beta-galactosidase (SA-beta-gal) activity after exposure to glucotoxicity for 72 h. Glucotoxicity does not markedly influence p16INK4a protein within 72 h, but p16INK4a levels increase significantly after a 7-days incubation period. mTOR inhibition with a low rapamycin concentration (1 nM) entirely prevents the glucotoxicity-mediated increase of SA-beta-gal and p16INK4a. At the functional level, reactive oxygen species, calcium homeostasis, and electrical activity are disturbed by glucotoxicity, and rapamycin fails to prevent this. In contrast, rapamycin significantly attenuates the insulin hypersecretion promoted by glucotoxicity by modifying the mRNA levels of Vamp2 and Snap25 genes, related to insulin exocytosis. Our data indicate an influence of glucotoxicity on pancreatic islet-cell senescence and a reduction of the senescence markers by mTOR inhibition, which is relevant to preserve the regenerative potential of the islets. Decreasing the influence of mTOR on islet cells exposed to glucotoxicity attenuates insulin hypersecretion, but is not sufficient to prevent electrophysiological disturbances, indicating the involvement of mTOR-independent mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:调节因子X6(RFX6)对胰腺内分泌发育和分化至关重要。RFX6变体p.His293LeufsTer7在芬兰人口中大大丰富,以近1:250人作为载体。重要的是,FinnGen的研究表明,杂合子携带者易患2型和妊娠期糖尿病.然而,这种倾向的确切机制仍然未知。
    方法:要了解该变体在β细胞发育和功能中的作用,我们使用CRISPR技术产生等位基因系列多能干细胞。我们创建了两种同基因干细胞模型:人类胚胎干细胞模型;和患者来源的干细胞模型。两者都分化为胰岛谱系(干细胞衍生的胰岛,SC-胰岛),然后植入免疫受损的NOD-SCID-Gamma小鼠。
    结果:纯合变体RFX6-/-的干细胞模型可以预见无法产生分泌胰岛素的胰腺β细胞,反映了Mitchell-Riley综合征中观察到的表型。值得注意的是,在胰腺内分泌阶段,前体标志物NEUROG3和SOX9上调,伴随细胞凋亡增加。有趣的是,杂合RFX6+/-SC-胰岛表现出RFX6单倍体不足(蛋白质表达减少54.2%),与β细胞成熟标记降低相关,钙信号改变和胰岛素分泌受损(在基础和高糖条件下减少62%和54%,分别)。然而,RFX6单倍体不足对β细胞数量或胰岛素含量没有影响。在小鼠体内植入后,胰岛素分泌的减少持续存在,与变异携带者患糖尿病的风险增加相一致。
    结论:我们的等位基因系列同基因SC-胰岛模型代表了阐明人类糖尿病特定病因的强大工具,能够灵敏地检测β细胞发育和功能的畸变。我们强调了RFX6在增强和维持胰腺祖细胞池中的关键作用,内分泌障碍和细胞死亡增加。我们证明RFX6单倍体不足不影响β细胞数量或胰岛素含量,但确实损害功能,糖尿病易感功能丧失变异的杂合携带者。
    方法:H1RFX6基因型的胰腺分化第3、5和7阶段的超深度批量RNA-seq数据保存在基因表达综合数据库中,登录号为GSE234289。原始蛋白质印迹图像存放在Mendeley(https://data。mendeley.com/datasets/g75drr3mgw/2)。
    OBJECTIVE: Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier. Importantly, the FinnGen study indicates a high predisposition for heterozygous carriers to develop type 2 and gestational diabetes. However, the precise mechanism of this predisposition remains unknown.
    METHODS: To understand the role of this variant in beta cell development and function, we used CRISPR technology to generate allelic series of pluripotent stem cells. We created two isogenic stem cell models: a human embryonic stem cell model; and a patient-derived stem cell model. Both were differentiated into pancreatic islet lineages (stem-cell-derived islets, SC-islets), followed by implantation in immunocompromised NOD-SCID-Gamma mice.
    RESULTS: Stem cell models of the homozygous variant RFX6-/- predictably failed to generate insulin-secreting pancreatic beta cells, mirroring the phenotype observed in Mitchell-Riley syndrome. Notably, at the pancreatic endocrine stage, there was an upregulation of precursor markers NEUROG3 and SOX9, accompanied by increased apoptosis. Intriguingly, heterozygous RFX6+/- SC-islets exhibited RFX6 haploinsufficiency (54.2% reduction in protein expression), associated with reduced beta cell maturation markers, altered calcium signalling and impaired insulin secretion (62% and 54% reduction in basal and high glucose conditions, respectively). However, RFX6 haploinsufficiency did not have an impact on beta cell number or insulin content. The reduced insulin secretion persisted after in vivo implantation in mice, aligning with the increased risk of variant carriers to develop diabetes.
    CONCLUSIONS: Our allelic series isogenic SC-islet models represent a powerful tool to elucidate specific aetiologies of diabetes in humans, enabling the sensitive detection of aberrations in both beta cell development and function. We highlight the critical role of RFX6 in augmenting and maintaining the pancreatic progenitor pool, with an endocrine roadblock and increased cell death upon its loss. We demonstrate that RFX6 haploinsufficiency does not affect beta cell number or insulin content but does impair function, predisposing heterozygous carriers of loss-of-function variants to diabetes.
    METHODS: Ultra-deep bulk RNA-seq data for pancreatic differentiation stages 3, 5 and 7 of H1 RFX6 genotypes are deposited in the Gene Expression Omnibus database with accession code GSE234289. Original western blot images are deposited at Mendeley ( https://data.mendeley.com/datasets/g75drr3mgw/2 ).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    一个11个月大的女孩患有严重的酸中毒,嗜睡和呕吐,被诊断为全羧化酶合成酶缺乏症.她接受了生物素治疗,直到8岁时呕吐时保持稳定,严重的酸中毒,低血糖,和高氨血症发展。旨在刺激合成代谢的静脉葡萄糖管理导致高血糖酮症酸中毒。胰岛素治疗快速校正生化参数,临床状况改善。我们认为影响胰腺β细胞的继发性Krebs循环紊乱会损害葡萄糖刺激的胰岛素分泌,导致胰岛素减少.
    An 11-month-old girl with severe acidosis, lethargy and vomiting, was diagnosed with holocarboxylase synthetase deficiency. She received biotin and was stable until age 8 years when vomiting, severe acidosis, hypoglycemia, and hyperammonemia developed. Management with intravenous glucose aiming to stimulate anabolism led to hyperglycemic ketoacidosis. Insulin therapy rapidly corrected biochemical parameters, and clinical status improved. We propose that secondary Krebs cycle disturbances affecting pancreatic beta cells impaired glucose-stimulated insulin secretion, resulting in insulinopenia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    新的研究提出了以下可能性:2型糖尿病(T2D)中存在的较高的胰高血糖素(GCG)水平是增强β细胞功能的代偿机制,而不是诱导失调的葡萄糖稳态,由于GCG通过胰岛内GCG信号传导直接在胰腺内对胰岛素分泌起重要作用。然而,在T2D控制不佳的状态下,胰腺α细胞量增加(过度产生的GCG),以响应胰岛素分泌不足,表明局部GCG活性下降。这种减少的原因尚不清楚。最近的证据揭示了血红素在细胞信号转导中的新作用,其机制涉及血红素与蛋白质的可逆结合。考虑到糖尿病胰岛中的蛋白质酪氨酸硝化增加,葡萄糖刺激的胰岛素分泌(GSIS)减少,我们推测血红素通过与GCG的瞬时相互作用并催化其酪氨酸硝化来调节GSIS,酪氨酸硝化可能会损害GCG的活性,导致胰岛内GCG信号丢失和胰岛素分泌明显受损。本文提供的数据阐明了血红素在破坏糖尿病局部GCG信号传导中的新作用。血红素与GCG结合并诱导GCG酪氨酸硝化。GCG中的两个酪氨酸残基均对硝化物质敏感。Further,通过与BSA共孵育,GCG也被证明是酪氨酸硝化的优选目标肽。酪氨酸硝化损害GCG刺激胰岛β细胞中cAMP依赖性信号并减少胰岛素释放。我们的研究结果提供了血红素在糖尿病病理过程中对GSIS受损的新作用。
    New studies raise the possibility that the higher glucagon (GCG) level present in type 2 diabetes (T2D) is a compensatory mechanism to enhance β-cell function, rather than induce dysregulated glucose homeostasis, due to an important role for GCG that acts directly within the pancreas on insulin secretion by intra-islet GCG signaling. However, in states of poorly controlled T2D, pancreatic α cell mass increases (overproduced GCG) in response to insufficient insulin secretion, indicating decreased local GCG activity. The reason for this decrease is not clear. Recent evidence has uncovered a new role of heme in cellular signal transduction, and its mechanism involves reversible binding of heme to proteins. Considering that protein tyrosine nitration in diabetic islets increases and glucose-stimulated insulin secretion (GSIS) decreases, we speculated that heme modulates GSIS by transient interaction with GCG and catalyzing its tyrosine nitration, and the tyrosine nitration may impair GCG activity, leading to loss of intra-islet GCG signaling and markedly impaired insulin secretion. Data presented here elucidate a novel role for heme in disrupting local GCG signaling in diabetes. Heme bound to GCG and induced GCG tyrosine nitration. Two tyrosine residues in GCG were both sensitive to the nitrating species. Further, GCG was also demonstrated to be a preferred target peptide for tyrosine nitration by co-incubation with BSA. Tyrosine nitration impaired GCG stimulated cAMP-dependent signaling in islet β cells and decreased insulin release. Our results provided a new role of heme for impaired GSIS in the pathological process of diabetes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    氧钒离子(VO2+)与咪唑-4-羧酸(Im4COOH)的反应,咪唑-2-羧酸(Im2COOH)和甲基咪唑-2-羧酸(MeIm2COOH),分别,在存在小生物配体(bL)[草酸盐(Ox),乳酸(Lact),使用电位酸碱滴定在水溶液中研究了柠檬酸盐(Cit)和磷酸盐(Phos)]和高分子量(HMW)人血清蛋白[白蛋白(HSA)和转铁蛋白(hTf)]。在生理pH下,具有氧化钒(IV)的高分子质量(HMM)蛋白的物种分布图由未取代配体的VO(HMM)2,VOL(HMM)主导(L-=Im4COO-和Im2COO-)。然而,对于N-取代的MeIm2COOH,生理pH下的物种分布图以VOL2,VO(HMM)2和VO2L2(HMM)为主。这些物种通过LC-MS进一步证实,MALDI-TOF-MS和EPR研究。使用1µM浓度的INS-1E细胞研究了复合物的葡萄糖刺激的胰岛素分泌(GSIS)作用,这是通过MTT测定法通过细胞毒性研究建立的。中性配合物,尤其是VO(MeIm2COO)2,在刺激胰岛素分泌方面比阳离子[VO(MeIm2CH2OH)2]2络合物和钒盐显示出有希望的结果。氧化钒(IV)复合物在正常血糖水平下显着降低了胰岛素刺激,但在高血糖条件(33.3mM葡萄糖培养基)下对胰岛素分泌显示出积极作用。在高血糖条件下暴露于氧化钒(IV)复合物的胰岛显示出刺激指数的显着增加,阳性对照(磺酰脲:格列齐特)观察到1.19、1.75、1.53、1.85、2.20和1.29,VOSO4,VO(Im4COO)2,VO(Im2COO)2,VO(MeIm2COO)2和VO(MeIm2CH2OH)22+,分别。该观察显示了钒络合物对2型糖尿病的潜在进一步作用,并且在本研究中首次得到证实。
    The reaction of the vanadyl ion (VO2+) with imidazole-4-carboxylic acid (Im4COOH), imidazole-2-carboxylic acid (Im2COOH) and methylimidazole-2-carboxylic acid (MeIm2COOH), respectively, in the presence of small bioligands (bL) [oxalate (Ox), lactate (Lact), citrate (Cit) and phosphate (Phos)] and high-molecular-weight (HMW) human serum proteins [albumin (HSA) and transferrin (hTf)] were studied in aqueous solution using potentiometric acid-base titrations. The species distribution diagrams for the high-molecular-mass (HMM) proteins with oxidovanadium(IV) under physiological pH were dominated by VO(HMM)2, VOL(HMM) for unsubstituted ligands (L- = Im4COO- and Im2COO-). However, for the N-substituted MeIm2COOH, the species distribution diagrams under physiological pH were dominated by VOL2, VO(HMM)2 and VO2L2(HMM). These species were further confirmed by LC-MS, MALDI-TOF-MS and EPR studies. The glucose-stimulated insulin secretion (GSIS) action of the complexes was investigated using INS-1E cells at a 1 µM concentration, which was established through cytotoxicity studies via the MTT assay. The neutral complexes, especially VO(MeIm2COO)2, showed promising results in the stimulation of insulin secretion than the cationic [VO(MeIm2CH2OH)2]2+ complex and the vanadium salt. Oxidovanadium(IV) complexes reduced insulin stimulation significantly under normoglycaemic levels but showed positive effects on insulin secretion under hyperglycaemic conditions (33.3 mM glucose media). The islets exposed to oxidovanadium(IV) complexes under hyperglycaemic conditions displayed a significant increase in the stimulatory index with 1.19, 1.75, 1.53, 1.85, 2.20 and 1.29 observed for the positive control (sulfonylurea:gliclazide), VOSO4, VO(Im4COO)2, VO(Im2COO)2, VO(MeIm2COO)2 and VO(MeIm2CH2OH)22+, respectively. This observation showed a potential further effect of vanadium complexes towards type 2 diabetes and has been demonstrated for the first time in this study.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:肥胖和2型糖尿病(T2D)的肾脏脂质蓄积引起的脂毒损伤与相关的肾脏损害有关。然而,缺乏独立于肥胖或T2D的肾脏异位脂质积累效应的模型。我们产生了肾小管特异性脂肪甘油三酯脂肪酶敲除(RT-SAKO)小鼠,以确定这种靶向三酰甘油(TAG)的过度储存是否会影响血糖控制和肾脏健康。
    方法:测试雄性和雌性RT-SAKO小鼠及其对照同窝在10-12和16-18周龄时的血糖控制变化。分析肾脏健康指标以及血脂和激素浓度。测定肾和血溶血磷脂酸(LPA)水平,使用LPA受体1/3抑制剂Ki-16425评估了LPA在介导血糖控制受损中的作用.
    结果:所有组仍对胰岛素敏感,但是16至18周龄的雄性RT-SAKO小鼠变得不耐受葡萄糖,没有发展肾脏炎症或纤维化。相反,这些小鼠的循环胰岛素和胰高血糖素样肽1(GLP-1)水平较低.Exendin-4检测到并恢复了受损的第一阶段葡萄糖刺激的胰岛素分泌。肾脏和血液LPA水平在老年雄性而非雌性RT-SAKO小鼠中升高,与肾脏二酰甘油激酶epsilon增加有关。抑制LPA介导的信号恢复血清GLP-1水平,第一阶段胰岛素分泌,和葡萄糖耐量。
    结论:单独的TAG过度储存不足以引起肾小管脂毒性。这项工作是首次显示内源性LPA在体内调节GLP-1水平,证明了一种新的机制,肾-肠-胰腺交叉调节胰岛素分泌和葡萄糖稳态。
    OBJECTIVE: Lipotoxic injury from renal lipid accumulation in obesity and type 2 diabetes (T2D) is implicated in associated kidney damage. However, models examining effects of renal ectopic lipid accumulation independent of obesity or T2D are lacking. We generated renal tubule-specific adipose triglyceride lipase knockout (RT-SAKO) mice to determine if this targeted triacylglycerol (TAG) over-storage affects glycemic control and kidney health.
    METHODS: Male and female RT-SAKO mice and their control littermates were tested for changes in glycemic control at 10-12 and 16-18 weeks of age. Markers of kidney health and blood lipid and hormone concentrations were analyzed. Kidney and blood lysophosphatidic acid (LPA) levels were measured, and a role for LPA in mediating impaired glycemic control was evaluated using the LPA receptor 1/3 inhibitor Ki-16425.
    RESULTS: All groups remained insulin sensitive, but 16- to 18-week-old male RT-SAKO mice became glucose intolerant, without developing kidney inflammation or fibrosis. Rather, these mice displayed lower circulating insulin and glucagon-like peptide 1 (GLP-1) levels. Impaired first-phase glucose-stimulated insulin secretion was detected and restored by Exendin-4. Kidney and blood LPA levels were elevated in older male but not female RT-SAKO mice, associated with increased kidney diacylglycerol kinase epsilon. Inhibition of LPA-mediated signaling restored serum GLP-1 levels, first-phase insulin secretion, and glucose tolerance.
    CONCLUSIONS: TAG over-storage alone is insufficient to cause renal tubule lipotoxicity. This work is the first to show that endogenously derived LPA modulates GLP-1 levels in vivo, demonstrating a new mechanism of kidney-gut-pancreas crosstalk to regulate insulin secretion and glucose homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    餐后高血糖是导致2型糖尿病(T2DM)的糖耐量受损的早期指标。磷脂脂肪酸组成的改变与诸如T2DM和非酒精性脂肪性肝病等疾病有关。溶血磷脂酰基转移酶10(LPLAT10,也称为LPCAT4和LPEAT2)在磷脂的脂酰基链重塑中起作用;然而,其与代谢性疾病的关系尚未完全阐明。LPLAT10在肝脏中表达较低,调节新陈代谢的主要器官,在正常情况下。这里,我们研究了LPLAT10在肝脏中的过表达是否导致葡萄糖代谢改善.对于过表达,我们使用改进的Ad载体产生了表达LPLAT10的腺病毒(Ad)载体(Ad-LPLAT10)。与对照Ad载体处理的小鼠相比,在Ad-LPLAT10处理的小鼠中通过诱导葡萄糖刺激的胰岛素分泌来抑制餐后高血糖。在Ad-LPLAT10处理的小鼠中,含有C18:1和C22:6的磷脂酰胆碱40:7的肝脏和血清水平升高。Ad-LPLAT10处理小鼠的血清显示小鼠胰岛素瘤MIN6细胞中葡萄糖刺激的胰岛素分泌增加。这些结果表明,由于肝脏特异性LPLAT10过表达而引起的肝磷脂酰胆碱种类的变化会影响胰腺并增加葡萄糖刺激的胰岛素分泌。我们的发现强调了LPLAT10作为T2DM潜在的新型治疗靶点。
    Postprandial hyperglycemia is an early indicator of impaired glucose tolerance that leads to type 2 diabetes mellitus (T2DM). Alterations in the fatty acid composition of phospholipids have been implicated in diseases such as T2DM and nonalcoholic fatty liver disease. Lysophospholipid acyltransferase 10 (LPLAT10, also called LPCAT4 and LPEAT2) plays a role in remodeling fatty acyl chains of phospholipids; however, its relationship with metabolic diseases has not been fully elucidated. LPLAT10 expression is low in the liver, the main organ that regulates metabolism, under normal conditions. Here, we investigated whether overexpression of LPLAT10 in the liver leads to improved glucose metabolism. For overexpression, we generated an LPLAT10-expressing adenovirus (Ad) vector (Ad-LPLAT10) using an improved Ad vector. Postprandial hyperglycemia was suppressed by the induction of glucose-stimulated insulin secretion in Ad-LPLAT10-treated mice compared with that in control Ad vector-treated mice. Hepatic and serum levels of phosphatidylcholine 40:7, containing C18:1 and C22:6, were increased in Ad-LPLAT10-treated mice. Serum from Ad-LPLAT10-treated mice showed increased glucose-stimulated insulin secretion in mouse insulinoma MIN6 cells. These results indicate that changes in hepatic phosphatidylcholine species due to liver-specific LPLAT10 overexpression affect the pancreas and increase glucose-stimulated insulin secretion. Our findings highlight LPLAT10 as a potential novel therapeutic target for T2DM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    胰岛素是仅由健康个体的胰岛内的β细胞产生的血糖稳态的重要调节剂。在那些受糖尿病影响的人中,免疫炎症,损坏,胰岛β细胞的破坏导致胰岛素缺乏和高血糖。目前了解糖尿病β细胞损伤机制的努力依赖于体外培养的尸体胰岛。然而,这些胰岛的分离包括去除支持完整胰腺中胰岛的关键基质和脉管系统。毫不奇怪,这些胰岛在标准培养条件下随着时间的推移显示功能降低,从而限制了它们对理解天然胰岛生物学的价值。利用小说,血管化微器官(VMO)方法,我们通过将孤立的人类胰岛纳入由生命滋养的三维基质中,概述了天然胰腺的元素,可灌注的血管.重要的是,这些胰岛显示出长期生存能力,并维持强健的葡萄糖刺激的胰岛素反应.此外,血管介导的免疫细胞向这些组织的递送提供了一个模型来评估胰岛-免疫细胞相互作用和随后的胰岛杀伤-1型糖尿病发病机制中的关键步骤.一起,这些结果建立了胰岛-VMO作为一种新的,体外平台,用于研究健康和疾病中的人类胰岛生物学。 .
    Insulin is an essential regulator of blood glucose homeostasis that is produced exclusively byβcells within the pancreatic islets of healthy individuals. In those affected by diabetes, immune inflammation, damage, and destruction of isletβcells leads to insulin deficiency and hyperglycemia. Current efforts to understand the mechanisms underlyingβcell damage in diabetes rely onin vitro-cultured cadaveric islets. However, isolation of these islets involves removal of crucial matrix and vasculature that supports islets in the intact pancreas. Unsurprisingly, these islets demonstrate reduced functionality over time in standard culture conditions, thereby limiting their value for understanding native islet biology. Leveraging a novel, vascularized micro-organ (VMO) approach, we have recapitulated elements of the native pancreas by incorporating isolated human islets within a three-dimensional matrix nourished by living, perfusable blood vessels. Importantly, these islets show long-term viability and maintain robust glucose-stimulated insulin responses. Furthermore, vessel-mediated delivery of immune cells to these tissues provides a model to assess islet-immune cell interactions and subsequent islet killing-key steps in type 1 diabetes pathogenesis. Together, these results establish the islet-VMO as a novel,ex vivoplatform for studying human islet biology in both health and disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胰岛炎症在2型糖尿病(T2D)的病因中起着至关重要的作用。存在于胰岛中的巨噬细胞已成为胰岛炎症的关键参与者。巨噬细胞表达大量与环境和代谢线索结合的先天性免疫受体,并整合这些信号以触发炎症反应,从而促进胰岛炎症的发展。一个这样的受体,Dectin-2已在胰岛中被鉴定;然而,其在葡萄糖代谢中的作用在很大程度上仍然未知。在这里,我们已经证明缺乏Dectin-2的小鼠表现出胰岛内的局部炎症,伴随胰岛素分泌受损和β细胞功能障碍。我们的发现表明,这些作用是由促炎细胞因子介导的,例如白细胞介素(IL)-1α和IL-6,它们由巨噬细胞分泌,这些巨噬细胞由于Dectin-2的丢失而获得了炎症表型。这项研究为Dectin-2在胰岛炎症发展中的作用机制提供了新的见解。
    Pancreatic islet inflammation plays a crucial role in the etiology of type 2 diabetes (T2D). Macrophages residing in pancreatic islets have emerged as key players in islet inflammation. Macrophages express a plethora of innate immune receptors that bind to environmental and metabolic cues and integrate these signals to trigger an inflammatory response that contributes to the development of islet inflammation. One such receptor, Dectin-2, has been identified within pancreatic islets; however, its role in glucose metabolism remains largely unknown. Here we have demonstrated that mice lacking Dectin-2 exhibit local inflammation within islets, along with impaired insulin secretion and β-cell dysfunction. Our findings indicate that these effects are mediated by proinflammatory cytokines, such as interleukin (IL)-1α and IL-6, which are secreted by macrophages that have acquired an inflammatory phenotype because of the loss of Dectin-2. This study provides novel insights into the mechanisms underlying the role of Dectin-2 in the development of islet inflammation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号