Genomic editing

基因组编辑
  • 文章类型: Journal Article
    背景:尽管血管化复合同种异体移植(VCA)在临床上取得了成功,全身免疫抑制对于预防同种异体移植排斥反应仍然是必要的.即使使用有效的免疫抑制方案(他克莫司,霉酚酸酯,和类固醇),大多数患者经历了几次排斥反应,往往在同一年。必须不断权衡全身副作用的风险与免疫抑制不足的风险,因此,急性和慢性排斥反应。在这种情况下,基因组编辑已成为减少对毒性免疫抑制方案需求的潜在工具,并在实体器官移植和异种移植领域获得关注。该策略也可能与VCA的未来相关。
    方法:我们讨论了基因工程的主题,并回顾了该领域的最新进展,这些进展证明了研究工具的合理性,例如在VCA的背景下,成簇的规则间隔短回文重复/Cas9。
    结果:我们根据最新的基因表达数据提出了VCA的具体策略。这包括众所周知的耐受性诱导策略。具体来说,通过CD40敲除靶向抗原呈递细胞和受体来源的T细胞之间的相互作用可能是有效的.VCA的新颖性是发现供体来源的T淋巴细胞可能在面部移植的同种异体移植排斥中起特殊作用。我们建议在移植前靶向这些细胞(例如,通过离体灌注移植物)通过敲除同种异体移植物中供体来源的免疫细胞长期持续存在所需的基因。
    结论:尽管近年来证明了VCA的可行性,使用成簇的间隔短回文重复序列/Cas9等工具对免疫调节策略的持续改进可能会导致开发出减轻与这种赋予生命的程序排斥相关的局限性的方法.
    Despite the clinical success in vascularized composite allotransplantation (VCA), systemic immunosuppression remains necessary to prevent allograft rejection. Even with potent immunosuppressive regimens (tacrolimus, mycophenolate mofetil, and steroids), most patients experience several rejection episodes, often within the same year. The risk of systemic side effects must constantly be weighed against the risk of under-immunosuppression and, thus, acute and chronic rejection. In this context, genomic editing has emerged as a potential tool to minimize the need for toxic immunosuppressive regimens and has gained attention in the fields of solid organ transplantation and xenotransplantation. This strategy may also be relevant for the future of VCA.
    We discuss the topic of genetic engineering and review recent developments in this field that justify investigating tools such as clustered regularly interspaced short palindromic repeats/Cas9 in the context of VCA.
    We propose specific strategies for VCA based on the most recent gene expression data. This includes the well-known strategy of tolerance induction. Specifically, targeting the interaction between antigen-presenting cells and recipient-derived T cells by CD40 knockout may be effective. The novelty for VCA is a discovery that donor-derived T lymphocytes may play a special role in allograft rejection of facial transplants. We suggest targeting these cells prior to transplantation (e.g., by ex vivo perfusion of the transplant) by knocking out genes necessary for the long-term persistence of donor-derived immune cells in the allograft.
    Despite the demonstrated feasibility of VCA in recent years, continued improvements to immunomodulatory strategies using tools like clustered regularly interspaced short palindromic repeats/Cas9 could lead to the development of approaches that mitigate the limitations associated with rejection of this life-giving procedure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Review
    纯合子家族性高胆固醇血症(HoFH)的儿童和青少年的临床结果可能是毁灭性的,在存在无效变体的情况下,治疗选择是有限的。在HoFH,动脉粥样硬化的风险从出生积累。基因治疗是一种有吸引力的治疗选择,因为低密度脂蛋白受体(LDLR)基因功能的恢复可以治愈HoFH。最近完成了一项使用重组腺相关载体(rAAV)将LDLRDNA递送至成年HoFH患者的临床试验;结果尚未报道。然而,这种治疗策略在转化为儿科人群时可能面临挑战.儿科肝脏经历显著的生长,这是显著的,因为rAAV载体DNA主要作为附加体(染色体外DNA)存在并且在细胞分裂期间不被复制。因此,在儿童期施用的基于rAAV的基因添加治疗可能仅具有短暂作用。LDLR中有超过2,000种独特的变体,基于基因组编辑的疗法开发的目标是用一组试剂治疗大多数(如果不是全部的话)突变.对于一个健壮的,持久的效果,LDLR必须在肝细胞的基因组中修复,这可以使用基因组编辑技术来实现,例如成簇的规则间隔的短回文重复序列(CRISPR)/Cas9和DNA修复策略,例如不依赖同源性的靶向整合。这篇综述在儿科患者组中讨论了这个问题,这些患者患有严重的复合杂合或纯合无效变异,这些变异与侵袭性早发性动脉粥样硬化和心肌梗塞有关。以及使用基因组编辑策略代替单采和肝移植治疗HoFH的重要临床前研究。
    The clinical outcome for children and adolescents with homozygous familial hypercholesterolaemia (HoFH) can be devastating, and treatment options are limited in the presence of a null variant. In HoFH, atherosclerotic risk accumulates from birth. Gene therapy is an appealing treatment option as restoration of low-density lipoprotein receptor (LDLR) gene function could provide a cure for HoFH. A clinical trial using a recombinant adeno-associated vector (rAAV) to deliver LDLR DNA to adult patients with HoFH was recently completed; results have not yet been reported. However, this treatment strategy may face challenges when translating to the paediatric population. The paediatric liver undergoes substantial growth which is significant as rAAV vector DNA persists primarily as episomes (extra-chromosomal DNA) and are not replicated during cell division. Therefore, rAAV-based gene addition treatment administered in childhood would likely only have a transient effect. With over 2,000 unique variants in LDLR, a goal of genomic editing-based therapy development would be to treat most (if not all) mutations with a single set of reagents. For a robust, durable effect, LDLR must be repaired in the genome of hepatocytes, which could be achieved using genomic editing technology such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and a DNA repair strategy such as homology-independent targeted integration. This review discusses this issue in the context of the paediatric patient group with severe compound heterozygous or homozygous null variants which are associated with aggressive early-onset atherosclerosis and myocardial infarction, together with the important pre-clinical studies that use genomic editing strategies to treat HoFH in place of apheresis and liver transplantation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    控制慢性乙型肝炎病毒(HBV)感染需要有效和长期的治疗。自然杀伤(NK)细胞是抗病毒的先天淋巴细胞,代表了当前免疫疗法的重要组成部分。在慢性HBV(CHB),NK细胞表现出表型和功能的改变,但保持抗病毒活性,特别是细胞溶解活性。另一方面,NK细胞也可能导致该疾病的肝损伤。基于NK的免疫疗法,包括过继NK细胞治疗和基于NK的检查点抑制,可能潜在地利用NK细胞的抗病毒方面来控制CHB感染,同时防止肝组织损伤。这里,我们回顾了在CHB感染的背景下NK细胞生物学的最新进展,并讨论了该疾病潜在的基于NK的免疫治疗策略。
    Effective and long-term treatment is required for controlling chronic Hepatitis B Virus (HBV) infection. Natural killer (NK) cells are antiviral innate lymphocytes and represent an essential arm of current immunotherapy. In chronic HBV (CHB), NK cells display altered changes in phenotypes and functions, but preserve antiviral activity, especially for cytolytic activity. On the other hand, NK cells might also cause liver injury in the disease. NK -based immunotherapy, including adoptive NK cell therapy and NK -based checkpoint inhibition, could potentially exploit the antiviral aspect of NK cells for controlling CHB infection while preventing liver tissue damage. Here, we review recent progress in NK cell biology under the context of CHB infection, and discuss potential NK -based immunotherapy strategies for the disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人类基因组编辑已经被越来越多的探索,以确定它是否可以用于根除镰状细胞病等遗传疾病。但它也被各种各样的道德困境所包围。这篇综述的目的是从哲学角度对治疗性人类基因组编辑的伦理进行范围审查,神学,公众视角,和研究伦理。对PubMed的系统化搜索,Embase,OvidMEDLINE,进行了WebofScience。最初的搜索结果是4445篇文章,在删除1750个副本并筛选剩余的2695篇文章之后,选择了27篇最终文章进行最终分析。从哲学和神学的角度来看,治疗性人类基因组编辑在伦理上通常是可接受的.除海洋区域外,世界范围内的公众观点也一致。这主要是由于对后代可能产生的影响而不同意。最后,人类研究伦理表明,女性并不总是被纳入知情同意,儿童自主权需要保留。需要进一步的研究来确定对母亲的不利影响,胎儿,和后代。
    Human genome editing has been increasingly explored to determine if it can be used to eradicate genetic diseases like sickle cell disease, but it has also been surrounded by a wide variety of ethical dilemmas. The purpose of this review was to conduct a scoping review of the ethics of therapeutic human genome editing in terms of philosophy, theology, public perspectives, and research ethics. A systemized search of PubMed, Embase, Ovid MEDLINE, and Web of Science was conducted. The initial search resulted in 4,445 articles, and after removing 1,750 duplicates and screening the remaining 2,695 articles, 27 final articles were selected for the final analysis. From a philosophical and theological standpoint, therapeutic human genome editing was generally ethically acceptable. Worldwide public perspectives were also in agreement except for the Oceanic region, which disagreed mainly due to the possible effects on future generations. Lastly, human research ethics revealed that women were not always included in informed consent, and that child autonomy needs to be preserved. Further research is needed to determine adverse effects on the mother, fetus, and future generations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于体内表达的Cas9和指导RNA,在一些食用菌中建立了CRISPR/Cas9系统。与这些系统相比,体外组装的Cas9和sgRNA核糖核蛋白复合物(RNPs)具有更多的优势,但是只报道了几个例子,编辑效率相对较低。在这项研究中,我们开发并优化了CRISPR/Cas9基因组编辑方法,该方法基于蘑菇金针菇中体外组装的核糖核蛋白复合物。表面活性剂TritonX-100在最佳方法中起着关键作用,在含有5-FOA的选择性培养基上,基因组编辑的靶向效率达到100%。这项研究是第一个使用RNP复合物递送在F.filiformis中建立CRISPR/Cas9基因组编辑系统的研究。此外,与其他方法相比,这种方法避免了使用任何外来的DNA,从而节省了质粒构建的时间和劳动力。
    CRISPR/Cas9 systems were established in some edible fungi based on in vivo expressed Cas9 and guide RNA. Compared with those systems, the in vitro assembled Cas9 and sgRNA ribonucleoprotein complexes (RNPs) have more advantages, but only a few examples were reported, and the editing efficiency is relatively low. In this study, we developed and optimized a CRISPR/Cas9 genome-editing method based on in vitro assembled ribonucleoprotein complexes in the mushroom Flammulina filiformis. The surfactant Triton X-100 played a critical role in the optimal method, and the targeting efficiency of the genomic editing reached 100% on a selective medium containing 5-FOA. This study is the first to use an RNP complex delivery to establish a CRISPR/Cas9 genome-editing system in F. filiformis. Moreover, compared with other methods, this method avoids the use of any foreign DNA, thus saving time and labor when it comes to plasmid construction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    四足物种的axolotls表现出强大的能力,可以在受伤时完全再生尾巴和四肢,因此成为再生生物学研究中的优秀模式生物。对于深入解剖组织再生机制,绝对需要在axolotls中开发适当的分子和遗传工具。以前,基于CRISPR-/Cas9的敲除和靶向基因敲入方法已经在axolotls中建立,允许基因解密基因功能,标签,追踪特定类型的细胞。这里,我们进一步扩展了CRISPR/Cas9技术应用,并描述了一种在axolotls中创建报告基因标记敲除等位基因的方法.这种方法结合了基因敲除和敲入,实现了给定基因的功能丧失和表达该特定基因的细胞的同时标记,允许识别,追踪“敲除”细胞。我们的方法为轴突发育和再生研究领域提供了有用的基因功能分析工具。
    Tetrapod species axolotls exhibit the powerful capacity to fully regenerate their tail and limbs upon injury, hence serving as an excellent model organism in regenerative biology research. Developing proper molecular and genetic tools in axolotls is an absolute necessity for deep dissection of tissue regeneration mechanisms. Previously, CRISPR-/Cas9-based knockout and targeted gene knock-in approaches have been established in axolotls, allowing genetically deciphering gene function, labeling, and tracing particular types of cells. Here, we further extend the CRISPR/Cas9 technology application and describe a method to create reporter-tagged knockout allele in axolotls. This method combines gene knockout and knock-in and achieves loss of function of a given gene and simultaneous labeling of cells expressing this particular gene, that allows identification, tracking of the \"knocking out\" cells. Our method offers a useful gene function analysis tool to the field of axolotl developmental and regenerative research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA操纵创造转基因动物的历史始于20世纪70年代,使用病毒作为在不同植入前阶段显微注射到小鼠胚胎中的第一个DNA分子。随后,使用简单的DNA质粒将其显微注射到受精的小鼠卵母细胞的原核中,该方法已成为多年的参考。胚胎干细胞的分离以及遗传学的进步使基因特异性敲除小鼠得以产生,后来改善了条件突变。克隆程序将基因失活扩展到家畜和其他非模型哺乳动物物种。慢病毒,人工染色体,卵胞浆内精子注射扩大了DNA操作的工具箱。这段短暂但紧张的历史的最后一章属于可编程核酸酶,特别是CRISPR-Cas系统,引发了基因组编辑技术的发展,我们生活在当前的革命中。
    The history of DNA manipulation for the creation of genetically modified animals began in the 1970s, using viruses as the first DNA molecules microinjected into mouse embryos at different preimplantation stages. Subsequently, simple DNA plasmids were used to microinject into the pronuclei of fertilized mouse oocytes and that method became the reference for many years. The isolation of embryonic stem cells together with advances in genetics allowed the generation of gene-specific knockout mice, later on improved with conditional mutations. Cloning procedures expanded the gene inactivation to livestock and other non-model mammalian species. Lentiviruses, artificial chromosomes, and intracytoplasmic sperm injections expanded the toolbox for DNA manipulation. The last chapter of this short but intense history belongs to programmable nucleases, particularly CRISPR-Cas systems, triggering the development of genomic-editing techniques, the current revolution we are living in.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景技术乳腺癌是全世界女性癌症相关死亡的主要原因,其中大多数死亡是由于转移。肿瘤转移的发生与肿瘤微环境密切相关,肿瘤相关巨噬细胞(TAMs)是主要的免疫细胞成分,在肿瘤的迁移中起着至关重要的作用。肿瘤进展的关键参与者,转移和存活是受体CXCR4及其配体CXCL12。CXCR4在多种细胞类型中表达,包括巨噬细胞和乳腺癌细胞。很多研讨都集中在CXCR4在乳腺癌细胞中表达的感化。方法在本研究中,我们通过在分化的THP-1细胞中通过CRISPR-CAS9系统降低CXCR4的表达(TAMs模型),研究了TAMs中表达的CXCR4对乳腺癌细胞迁移的作用.结果根据伤口愈合迁移试验,与未编辑的和dTHP-1细胞共培养的MCF7癌细胞相比,与遗传编辑的dTHP-1细胞共培养的MCF7癌细胞具有较低的迁移率。结论CXCR4通过TAM-癌细胞串扰作用于乳腺癌细胞迁移。
    Introduction Breast cancer is the leading cause of cancer-related deaths in women worldwide with the majority of deaths due to metastasis. The development of metastasis is closely related to the tumor microenvironment where tumor-associated macrophages (TAMs) are the main immune cell component playing a crucial role in tumor migration. Key players in tumor progression, metastasis and survival are the receptor CXCR4 and its ligand CXCL12. CXCR4 is expressed in multiple cell types including macrophages and breast cancer cells. Many studies have focus on the role of CXCR4 expressed in breast cancer cells. Methods In this study, we investigated the role of CXCR4 expressed in TAMs on breast cancer cell migration by reducing CXCR4 expression via CRISPR-CAS9 system in differentiated THP-1 cells (a TAMs model). Results According to wound healing migration assay, MCF7 cancer cells co-cultured with genetically edited dTHP-1 cells have a lower migration rate as compared to MCF7 cancer cells co-cultured with unedited and dTHP-1 cells. Conclusion The study demonstrates the role of CXCR4 on breast cancer cell migration through TAM-cancer cell crosstalk.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在过去的二十年里,研究基因对之间遗传关系的合成致死性(SL)概念逐渐成为选择性消除癌细胞的最佳策略之一.鉴定合成致死相互作用(SLI)的一些最成功的方法在很大程度上依赖于需要大量验证以减轻假阳性的汇集筛选形式。这里,我们描述了一种使用基于CRISPR的策略识别SLI的高通量方法,高通量生产质粒DNA制剂,慢病毒生产,和随后使用单指导RNA(sgRNA)的细胞转导。该方法可用于查询数百个SLI。作为一个例子,我们描述了与构建DNA损伤和修复(DDR)基因相互作用图相关的方法。多孔板和基于图像的定量的使用允许在一个接一个的基础上以高分辨率比较测量SLI。此外,这种可扩展的,阵列CRISPR筛选方法可应用于多种癌细胞类型,和感兴趣的基因,导致可以在治疗上利用的新功能发现。
    Over the past two decades, the concept of synthetic lethality (SL) that queries genetic relationships between gene pairs has gradually emerged as one of the best strategies to selectively eliminate cancer cells. Some of the most successful approaches to identify synthetic lethal interactions (SLIs) were largely dependent on pooled screening formats that require heavy validation in order to mitigate false positives. Here, we describe a high-throughput method to identify SLIs using CRISPR-based strategy that covers, high-throughput production of plasmid DNA preparations, lentiviral production, and subsequent cellular transduction using single guide RNAs (sgRNAs). This method could be adopted to query hundreds of SLIs. As an example, we describe the methods associated with building an interaction map for DNA damage and repair (DDR) genes. The use of multiwell plates and image-based quantification allows a comparative measurement of SLIs at a high-resolution on a one-by-one basis. Furthermore, this scalable, arrayed CRISPR screening method can be applied to multiple cancer cell types, and genes of interest, resulting in new functional discoveries that can be exploited therapeutically.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    簇规则间隔短回文重复(CRISPR)相关蛋白9(Cas9)的治疗性基因组编辑的潜力受到CRISPR-Cas9系统的体内活性的精确调节的困难的严重阻碍。在这里,声控和活性氧(ROS)敏感的声敏剂集成的金属有机框架(MOFs),表示为P/M@CasMTH1,是使用基因组编辑技术开发的增强声动力疗法(SDT)功效。P/M@CasMTH1纳米颗粒包含单线态氧(1O2)产生的MOF结构,该结构通过1O2可裂解的接头与CRISPR-Cas9系统锚定,它不仅用作靶向MTH1的CRISPR-Cas9的递送载体,而且还用作时空激活基因组编辑的声调节因子。P/M@CasMTH1从溶酶体中逸出,收集超声波(US)能量并将其转化为丰富的1O2以诱导SDT。产生的ROS随后引发ROS响应性硫醚键的裂解,从而诱导CRISPR-Cas9系统的可控释放和基因组编辑的启动。MTH1的基因组破坏通过破坏肿瘤细胞的自我防御系统显着增强了SDT的治疗功效,从而引起细胞凋亡和肿瘤抑制。这种协同MTH1破坏和丰富的1O2生成的治疗策略为基于新兴的纳米医学支持的基因组编辑技术增强SDT功效提供了范例。
    The potential of the cluster regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9)-based therapeutic genome editing is severely hampered by the difficulties in precise regulation of the in vivo activity of the CRISPR-Cas9 system. Herein, sono-controllable and reactive oxygen species (ROS)-sensitive sonosensitizer-integrated metal-organic frameworks (MOFs), denoted as P/M@CasMTH1, are developed for augmented sonodynamic therapy (SDT) efficacy using the genome-editing technology. P/M@CasMTH1 nanoparticles comprise singlet oxygen (1 O2 )-generating MOF structures anchored with CRISPR-Cas9 systems via 1 O2 -cleavable linkers, which serve not only as a delivery vector of CRISPR-Cas9 targeting MTH1, but also as a sonoregulator to spatiotemporally activate the genome editing. P/M@CasMTH1 escapes from the lysosomes, harvests the ultrasound (US) energy and converts it into abundant 1 O2 to induce SDT. The generated ROS subsequently trigger cleavage of ROS-responsive thioether bonds, thus inducing controllable release of the CRISPR-Cas9 system and initiation of genome editing. The genomic disruption of MTH1 conspicuously augments the therapeutic efficacy of SDT by destroying the self-defense system in tumor cells, thereby causing cellular apoptosis and tumor suppression. This therapeutic strategy for synergistic MTH1 disruption and abundant 1 O2 generation provides a paradigm for augmenting SDT efficacy based on the emerging nanomedicine-enabled genome-editing technology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号