Genetically encoded voltage indicators

基因编码电压指标
  • 文章类型: Journal Article
    线粒体膜电位(MMP)在细胞和细胞器的功能中起着至关重要的作用,涉及各种细胞生理过程,包括能源生产,活性氧(ROS)的形成,未折叠的蛋白质应激,细胞存活。目前,缺乏基因编码的MMP荧光指标(GEVIs)。在我们筛选各种GEVIs的潜在监测MMP时,加速动作电位传感器(ASAP)在靶向线粒体和多种细胞类型对去极化的敏感性方面表现最佳。然而,线粒体ASAP也显示出对心肌细胞中ROS的敏感性。因此,产生两个抗ROS的ASAP突变体。双突变体ASAP3-ST表现出最高的电压灵敏度,但荧光较弱。总的来说,获得了四个能够靶向线粒体的GEVIs,并将其命名为线粒体电位指标1-4(MPI-1-4)。在体内,利用MPI-2进行的纤维光度法实验显示,异氟烷诱导的M2皮层麻醉过程中线粒体去极化。
    Mitochondrial membrane potential (MMP) plays a crucial role in the function of cells and organelles, involving various cellular physiological processes, including energy production, formation of reactive oxygen species (ROS), unfolded protein stress, and cell survival. Currently, there is a lack of genetically encoded fluorescence indicators (GEVIs) for MMP. In our screening of various GEVIs for their potential monitoring MMP, the Accelerated Sensor of Action Potentials (ASAP) demonstrated optimal performance in targeting mitochondria and sensitivity to depolarization in multiple cell types. However, mitochondrial ASAPs also displayed sensitivity to ROS in cardiomyocytes. Therefore, two ASAP mutants resistant to ROS were generated. A double mutant ASAP3-ST exhibited the highest voltage sensitivity but weaker fluorescence. Overall, four GEVIs capable of targeting mitochondria were obtained and named mitochondrial potential indicators 1-4 (MPI-1-4). In vivo, fiber photometry experiments utilizing MPI-2 revealed a mitochondrial depolarization during isoflurane-induced narcosis in the M2 cortex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大多数动物细胞类型被归类为非兴奋,因为它们不会产生在兴奋细胞中观察到的动作电位,如神经元和肌肉细胞。因此,在不可激发的细胞中解析电压信号需要具有非常高的电压灵敏度的传感器。在这项研究中,超亮的,超灵敏,可校准的基因编码电压传感器rEstus是使用结构引导工程开发的。rEstus在非兴奋细胞的静息电压范围内最敏感,并且在快速电压尖峰的亮度变化方面比其前体ASAP3提高了3.6倍。使用rEstus,揭示了几种非兴奋细胞系(A375,HEK293T,MCF7)在第二至毫秒级的时间内经历自发的内源性改变。这些光学记录的电压变化的相关分析提供了直接的,实时读出细胞-细胞耦合,显示视觉连接的A375和HEK293T细胞也在很大程度上电连接,而MCF7细胞仅弱耦合。所呈现的工作提供了用于活细胞中的非侵入性电压成像的增强的工具和方法,并且表明自发的内源性膜电压改变不限于可兴奋的细胞,而且还发生在多种不可兴奋的细胞类型中。
    Most animal cell types are classified as non-excitable because they do not generate action potentials observed in excitable cells, such as neurons and muscle cells. Thus, resolving voltage signals in non-excitable cells demands sensors with exceptionally high voltage sensitivity. In this study, the ultrabright, ultrasensitive, and calibratable genetically encoded voltage sensor rEstus is developed using structure-guided engineering. rEstus is most sensitive in the resting voltage range of non-excitable cells and offers a 3.6-fold improvement in brightness change for fast voltage spikes over its precursor ASAP3. Using rEstus, it is uncovered that the membrane voltage in several non-excitable cell lines (A375, HEK293T, MCF7) undergoes spontaneous endogenous alterations on a second to millisecond timescale. Correlation analysis of these optically recorded voltage alterations provides a direct, real-time readout of electrical cell-cell coupling, showing that visually connected A375 and HEK293T cells are also largely electrically connected, while MCF7 cells are only weakly coupled. The presented work provides enhanced tools and methods for non-invasive voltage imaging in living cells and demonstrates that spontaneous endogenous membrane voltage alterations are not limited to excitable cells but also occur in a variety of non-excitable cell types.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    可扩展和高通量的电生理测量系统对于加速药物开发中心脏疾病的阐明是必要的。光学测图是同时测量几个关键电生理参数的主要方法,如动作电位,细胞内游离钙和传导速度,高时空分辨率。这个工具已经应用于孤立的整个心脏,整个心脏在体内,组织切片和心脏单层/组织构建体。尽管所有这些基材的光学映射有助于我们对离子通道和纤颤动力学的理解,心脏单层/组织构建体是可扩展的宏观基质,特别适合高通量询问。这里,我们描述和验证了一个可扩展和全自动单层光学测绘机器人,不需要人工干预和合理的成本。作为原理证明,我们在成熟的新生大鼠心室肌细胞单层铺板于标准35mm培养皿上,对钙动力学进行平行宏观光学定位.鉴于再生医学和个性化医学的进步,我们还使用基因编码的电压指示器和常用的电压敏感染料,对人类多能干细胞来源的心肌细胞单层中的电压动力学进行了并行宏观光学成像,以证明我们系统的多功能性.
    Scalable and high-throughput electrophysiological measurement systems are necessary to accelerate the elucidation of cardiac diseases in drug development. Optical mapping is the primary method of simultaneously measuring several key electrophysiological parameters, such as action potentials, intracellular free calcium and conduction velocity, at high spatiotemporal resolution. This tool has been applied to isolated whole-hearts, whole-hearts in-vivo, tissue-slices and cardiac monolayers/tissue-constructs. Although optical mapping of all of these substrates have contributed to our understanding of ion-channels and fibrillation dynamics, cardiac monolayers/tissue-constructs are scalable macroscopic substrates that are particularly amenable to high-throughput interrogation. Here, we describe and validate a scalable and fully-automated monolayer optical mapping robot that requires no human intervention and with reasonable costs. As a proof-of-principle demonstration, we performed parallelized macroscopic optical mapping of calcium dynamics in the well-established neonatal-rat-ventricular-myocyte monolayer plated on standard 35 mm dishes. Given the advancements in regenerative and personalized medicine, we also performed parallelized macroscopic optical mapping of voltage dynamics in human pluripotent stem cell-derived cardiomyocyte monolayers using a genetically encoded voltage indictor and a commonly-used voltage sensitive dye to demonstrate the versatility of our system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Genetically encoded voltage indicators (GEVIs) expressed pan-neuronally were able to optically resolve bicuculline induced spontaneous oscillations in brain slices of the mouse motor cortex. Three GEVIs were used that differ in their timing of response to voltage transients as well as in their voltage ranges. The duration, number of cycles, and frequency of the recorded oscillations reflected the characteristics of each GEVI used. Multiple oscillations imaged in the same slice never originated at the same location, indicating the lack of a \"hot spot\" for induction of the voltage changes. Comparison of pan-neuronal, Ca2+/calmodulin-dependent protein kinase II α restricted, and parvalbumin restricted GEVI expression revealed distinct profiles for the excitatory and inhibitory cells in the spontaneous oscillations of the motor cortex. Resolving voltage fluctuations across space, time, and cell types with GEVIs represent a powerful approach to dissecting neuronal circuit activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The CA1 area in the mammalian hippocampus is essential for spatial learning. Pyramidal cells are the hippocampus output neurons and their activities are regulated by inhibition exerted by a diversified population of interneurons. Lateral inhibition has been suggested as the mechanism enabling the reconfiguration of pyramidal cell assembly activity observed during spatial learning tasks in rodents. However, lateral inhibition in the CA1 lacks the overwhelming evidence reported in other hippocampal areas such as the CA3 and the dentate gyrus. The use of genetically encoded voltage indicators and fast optical recordings permits the construction of cell-type specific response maps of neuronal activity. Here, we labelled mouse CA1 pyramidal neurons with the genetically encoded voltage indicator ArcLight and optically recorded their response to Schaffer Collaterals stimulation in vitro. By undertaking a manifold learning approach, we report a hyperpolarization-dominated area focused in the perisomatic region of pyramidal cells receiving late excitatory synaptic input. Functional network organization metrics revealed that information transfer was higher in this area. The localized hyperpolarization disappeared when GABAA receptors were pharmacologically blocked. This is the first report where the spatiotemporal pattern of lateral inhibition is visualized in the CA1 by expressing a genetically encoded voltage indicator selectively in principal neurons. Our analysis suggests a fundamental role of lateral inhibition in CA1 information processing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Optogenetic approaches combine the power to allocate optogenetic tools (proteins) to specific cell populations (defined genetically or functionally) and the use of light-based interfaces between biological wetware (cells and tissues) and hardware (controllers and recorders). The optogenetic toolbox contains two main compartments: tools to interfere with cellular processes and tools to monitor cellular events. Among the latter are genetically encoded voltage indicators (GEVIs). This chapter outlines the development, current state of the art and prospects of emerging optical GEVI imaging technologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    In yeast, adaptation to varying conditions often requires proper regulation of the plasma membrane potential. To determine yeast membrane potential change, optical methods involving potentiometric dyes have been supplemental to the direct electrode-based method. However, the hydrophobic nature of the dyes and their slow distribution across the membrane still limits their utilization. Genetically encoded voltage indicator (GEVI) proteins employed in neuroscience offer a tantalizing alternative for monitoring yeast membrane potential change. In this work, several widely used GEVI proteins were assessed in Saccharomyces cerevisiae for their expression and function as a voltage reporter. Among them, only ArcLight and Accelerated Sensor of Action Potential (ASAP) proteins could be expressed and transported to the plasma membrane. While the voltage-sensing capability was demonstrated for both ArcLight and ASAP, ArcLight fluorescence was sensitive to the intracellular pH change concurrently with the voltage change. Therefore, we established that ASAP is the more suitable GEVI protein for reporting yeast membrane potential change. This voltage-sensing reporter for yeast based on ASAP offers a new effective strategy for real-time optical detection of yeast membrane potential change, which potentially facilitates many areas of yeast research including optimizing growth conditions for industrial use and investigating yeast ion transport system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The neural membrane potential of nerve cells is the basis of neural activity production, which controls advanced brain activities such as memory, emotion, and learning. In the past decades, optical voltage indicator has emerged as a promising tool to decode neural activities with high-fidelity and excellent spatiotemporal resolution. In particular, the hybrid optical probes can combine the advantageous photophysical properties of different components such as voltage-sensitive molecules, highly fluorescent fluorophores, membrane-targeting tags, and optogenetic materials, thus showing numerous advantages in improving the photoluminescence intensity, voltage sensitivity, photostability, and cell specificity of probes. In this review, the current state-of-the-art hybrid probes are highlighted, that are designed by using fluorescent proteins, organic dyes, and fluorescent nanoprobes as the fluorophores, respectively. Then, the design strategies, voltage-sensing mechanisms and the in vitro and in vivo neural activity imaging applications of the hybrid probes are summarized. Finally, based on the current achievements of voltage imaging studies, the challenges and prospects for design and application of hybrid optical probes in the future are presented.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Fluorescent probes that indicate biologically important quantities are widely used for many different types of biological experiments across life sciences. During recent years, limitations of small molecule-based indicators have been overcome by the development of genetically encoded indicators. Here we focus on fluorescent calcium and voltage indicators and point to their applications mainly in neurosciences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Genetically encoded fluorescent voltage indicators, such as ArcLight, have been used to report action potentials (APs) in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). However, the ArcLight expression, in all cases, relied on a high number of lentiviral vector-mediated random genome integrations (8-12 copy/cell), raising concerns such as gene disruption and alteration of global and local gene expression, as well as loss or silencing of reporter genes after differentiation. Here, we report the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease technique to develop a hiPSC line stably expressing ArcLight from the AAVS1 safe harbor locus. The hiPSC line retained proliferative ability with a growth rate similar to its parental strain. Optical recording with conventional epifluorescence microscopy allowed the detection of APs as early as 21 days postdifferentiation, and could be repeatedly monitored for at least 5 months. Moreover, quantification and analysis of the APs of ArcLight-CMs identified two distinctive subtypes: a group with high frequency of spontaneous APs of small amplitudes that were pacemaker-like CMs and a group with low frequency of automaticity and large amplitudes that resembled the working CMs. Compared with FluoVolt voltage-sensitive dye, although dimmer, the ArcLight reporter exhibited better optical performance in terms of phototoxicity and photostability with comparable sensitivities and signal-to-noise ratios. The hiPSC line with targeted ArcLight engineering design represents a useful tool for studying cardiac development or hiPSC-derived cardiac disease models and drug testing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号