Genetic code

遗传密码
  • 文章类型: Journal Article
    遗传密码在所有生物体中起着核心作用,其建模对于描述和理解所涉及的编码规则非常重要。有许多方法可以对遗传密码的各个方面进行建模。一种简单而成功的数学工具,用于对密码子之间和氨基酸之间的相似性进行建模,是超度量,尤其是p-adic距离。本文概述了遗传信息的超(p-adic)建模,以及使用遗传密码将其翻译成蛋白质。
    The genetic code plays a central role in all living organisms and its modeling is important for describing and understanding involved the coding rules. There are many approaches to modeling various aspects of the genetic code. One of the simple and successful mathematical tools for modeling the similarity both between codons and between amino acids, is the ultrametrics and especially the p-adic distance. This article contains an overview of ultrametric (p-adic) modeling of genetic information, and its translation to proteins using the genetic code.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    配体如胰岛素,表皮生长因子,血小板源性生长因子,神经生长因子(NGF)通过与受体酪氨酸激酶(RTK)结合在细胞膜上启动信号。与G蛋白偶联受体一起,RTK是将细胞外信号转化为细胞内信号的主要平台。研究RTK信号一直是一个挑战,然而,由于RTK通常耦合的多个信号通路,包括MAP/ERK,PLCγ,和1A类磷酸肌醇3-激酶(PI3K)。多管齐下的RTK信号传导一直是隔离任何一个下游途径的作用的障碍。这里,我们使用PI3K的光遗传学激活将其激活与其他RTK信号通路分离。在这种情况下,我们使用遗传密码扩展将点击化学非规范氨基酸引入膜蛋白的胞外侧。应用细胞不渗透的点击化学荧光团允许我们实时可视化膜蛋白向质膜的递送。使用这些方法,我们证明PI3K的激活,不激活RTK信号下游的其他途径,足以将TRPV1离子通道和胰岛素受体输送到质膜。
    Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自1996年以来,由于6种统计方法的发展,已经确定了基因中的循环代码:每帧三核苷酸频率(Arquès和Michel,1996),每帧相关函数(Arquès和Michel,1997),框架置换三核苷酸频率(Frey和Michel,2003,2006),基因群体水平的高级统计功能(米歇尔,2015)和基因水平(米歇尔,2017)。所有这些3帧统计方法分析了3个基因帧中的三核苷酸信息:阅读框和2个移位框。值得注意的是,密码子使用不允许识别循环代码(Michel,2020)。自1996年以来,这一直是一个长期存在的问题,阻碍了生物学家获得循环代码理论。通过考虑由代码理论产生的循环代码条件,特别是置换类的概念,在以前的统计工作的基础上,一种仅基于密码子使用的新统计方法,即1帧统计方法,令人惊讶的是,在细菌基因和平均(细菌,考古,真核)基因,几乎在古细菌基因中。此外,一个新的参数定义表明,细菌和古细菌基因表现出相同数量级的密码子使用分散,但显著高于在真核基因中观察到的。这一统计发现可以解释与细菌和古细菌基因相比,真核基因中密码的变异性更大。这个问题已经公开了很多年。最后,生物学家现在可以在基因组水平(跨给定基因组中的所有基因)和仅使用密码子使用的基因水平上搜索新的(变异)循环代码,不需要分析移位的帧。
    Since 1996, circular codes in genes have been identified thanks to the development of 6 statistical approaches: trinucleotide frequencies per frame (Arquès and Michel, 1996), correlation functions per frame (Arquès and Michel, 1997), frame permuted trinucleotide frequencies (Frey and Michel, 2003, 2006), advanced statistical functions at the gene population level (Michel, 2015) and at the gene level (Michel, 2017). All these 3-frame statistical methods analyse the trinucleotide information in the 3 frames of genes: the reading frame and the 2 shifted frames. Notably, codon usage does not allow for the identification of circular codes (Michel, 2020). This has been a long-standing problem since 1996, hindering biologists\' access to circular code theory. By considering circular code conditions resulting from code theory, particularly the concept of permutation class, and building upon previous statistical work, a new statistical approach based solely on the codon usage, i.e. a 1-frame statistical method, surprisingly reveals the maximal C3 self-complementary trinucleotide circular code X in bacterial genes and in average (bacterial, archaeal, eukaryotic) genes, and almost in archaeal genes. Additionally, a new parameter definition indicates that bacterial and archaeal genes exhibit codon usage dispersion of the same order of magnitude, but significantly higher than that observed in eukaryotic genes. This statistical finding may explain the greater variability of codes in eukaryotic genes compared to bacterial and archaeal genes, an issue that has been open for many years. Finally, biologists can now search for new (variant) circular codes at both the genome level (across all genes in a given genome) and the gene level using only codon usage, without the need for analysing the shifted frames.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转移RNA(tRNA)是必需的小型非编码RNA,可将基因组信息翻译成所有生命形式的蛋白质。tRNA的主要功能是将氨基酸结构单元带入核糖体用于蛋白质合成。在核糖体中,tRNA与信使RNA(mRNA)相互作用,以介导氨基酸按照遗传密码规则掺入到生长的多肽链中。遗传密码的准确解释需要tRNA携带与其反密码子身份匹配的氨基酸并解码mRNA上的正确密码子。这些步骤中的错误导致具有错误氨基酸的密码子的翻译(误译),影响信息从DNA到蛋白质的精确流动。由于误译而导致的突变蛋白的积累危害了蛋白稳定和细胞活力。然而,误译的概念正在演变,越来越多的证据表明,误译可以用作生存和适应环境条件的机制。在这次审查中,我们讨论了tRNA通过其与翻译因子的动态和复杂的相互作用在调节翻译保真度中的核心作用。我们总结了误译tRNA的最新发现,并描述了潜在的分子机制以及能够和促进误译的特定条件和环境。
    Transfer RNAs (tRNA) are essential small non-coding RNAs that enable the translation of genomic information into proteins in all life forms. The principal function of tRNAs is to bring amino acid building blocks to the ribosomes for protein synthesis. In the ribosome, tRNAs interact with messenger RNA (mRNA) to mediate the incorporation of amino acids into a growing polypeptide chain following the rules of the genetic code. Accurate interpretation of the genetic code requires tRNAs to carry amino acids matching their anticodon identity and decode the correct codon on mRNAs. Errors in these steps cause the translation of codons with the wrong amino acids (mistranslation), compromising the accurate flow of information from DNA to proteins. Accumulation of mutant proteins due to mistranslation jeopardizes proteostasis and cellular viability. However, the concept of mistranslation is evolving, with increasing evidence indicating that mistranslation can be used as a mechanism for survival and acclimatization to environmental conditions. In this review, we discuss the central role of tRNAs in modulating translational fidelity through their dynamic and complex interplay with translation factors. We summarize recent discoveries of mistranslating tRNAs and describe the underlying molecular mechanisms and the specific conditions and environments that enable and promote mistranslation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    密码生物学揭示了遗传密码之外的许多密码,是生物功能不可或缺的一部分。最近的学者将不断发展的代码生物学领域与分析心理学联系起来,证实人类有机体遗传的编码信息确实是巨大的,并且能够非常复杂。在这次讨论中,我将通过展示具体认知的发展如何揭示一种代码来扩展这个项目,该代码将普遍的情绪反应世界与共同的体验与具体的视觉空间叙事世界联系起来-即,分析心理学的“原型”。以这种方式来看,原型成为自发的象征性叙事,象征着对典型人类环境的普遍情绪反应。这种象征性的叙述旨在适应,并使用通用代码将这种情况映射到视觉空间叙事,适配器是人体本身。
    Code biology reveals a great many codes beyond the genetic code as integral to biological functioning. Recent scholars have linked the growing field of code biology to analytical psychology, confirming that the encoded information inherited by the human organism is indeed massive and capable of great sophistication. In this discussion, I will expand on this project by showing how developments in embodied cognition reveal a code that links the world of universal emotional responses to common experiences to the world of embodied visuospatial narratives--i.e., the \"archetypes\" of analytical psychology. Viewed in this manner, archetypes become spontaneous symbolic narratives that symbolize universal emotional responses to typical human environments. Such symbolic narratives aim toward adaptation, and use a universal code that maps such situations to visuospatial narratives, with the adaptor being the human body itself.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我分析了甘氨酰-tRNA合成酶(GlyRS)和赖氨酰-tRNA合成酶(LysRS)的多系起源,使以下含义变得合理。事实上,进化氨酰tRNA合成酶(ARSs)所需的遗传密码非常晚,这与晚期起源完全一致,在主要的谱系中,GlyRS和LysRS。的确,正如协同进化理论所建议的那样,由于遗传密码是由氨基酸之间的生物合成关系构成的,并且这些发生在tRNA样分子上,这些分子在其结构过程中显然已经装载了氨基酸,这使得ARSs的晚期起源成为可能。所有这些都证实了遗传密码起源的共同进化理论,损害了理论,而这些理论将预测ARSs在组织遗传密码中的作用的早期干预。此外,GlyRS和LysRS蛋白结构域在主要系统谱系中的组装本身至少证明了祖先基因是使用编码这些蛋白结构域的遗传物质片段组装的可能性.这与基因的外显子理论相一致,该理论假定祖先外显子编码组装形成第一个基因的蛋白质结构域或模块。这一理论在GlyRS和LysRS的进化中得到了精确的例证,这些进化是通过在主要的系统谱系中组装蛋白质结构域而发生的。正如这里分析的。此外,这些蛋白质的蛋白质结构域晚期组装成两个主要的系统谱系,即GlyRS和LysRS的多系起源,似乎证实了LUCA的后代进化阶段,以及至少细菌祖先和古细菌的进化阶段的第一部分。的确,这种多系起源意味着遗传密码仍在进化,因为至少有两个ARSs,即今天使遗传密码成为可能的蛋白质,仍在发展。这意味着所涉及的进化阶段的特征不是细胞,而是原始细胞,也就是说,因为这正是后代的定义。观察到GlyRS和LysRS都起源于导致细菌和古细菌的系统谱系,将证明这一点,更一般地说,蛋白质最有可能仍处于快速和渐进进化中。即,蛋白质的多系起源,至少将细菌祖先和古细菌的进化阶段的初始阶段限定为属于后代的阶段。
    I analyzed the polyphyletic origin of glycyl-tRNA synthetase (GlyRS) and lysyl-tRNA synthetase (LysRS), making plausible the following implications. The fact that the genetic code needed to evolve aminoacyl-tRNA synthetases (ARSs) only very late would be in perfect agreement with a late origin, in the main phyletic lineages, of both GlyRS and LysRS. Indeed, as suggested by the coevolution theory, since the genetic code was structured by biosynthetic relationships between amino acids and as these occurred on tRNA-like molecules which were evidently already loaded with amino acids during its structuring, this made possible a late origin of ARSs. All this corroborates the coevolution theory of the origin of the genetic code to the detriment of theories which would instead predict an early intervention of the action of ARSs in organizing the genetic code. Furthermore, the assembly of the GlyRS and LysRS protein domains in main phyletic lineages is itself at least evidence of the possibility that ancestral genes were assembled using pieces of genetic material that coded these protein domains. This is in accordance with the exon theory of genes which postulates that ancestral exons coded for protein domains or modules that were assembled to form the first genes. This theory is exemplified precisely in the evolution of both GlyRS and LysRS which occurred through the assembly of protein domains in the main phyletic lineages, as analyzed here. Furthermore, this late assembly of protein domains of these proteins into the two main phyletic lineages, i.e. a polyphyletic origin of both GlyRS and LysRS, appears to corroborate the progenote evolutionary stage for both LUCA and at least the first part of the evolutionary stages of the ancestor of bacteria and that of archaea. Indeed, this polyphyletic origin would imply that the genetic code was still evolving because at least two ARSs, i.e. proteins that make the genetic code possible today, were still evolving. This would imply that the evolutionary stages involved were characterized not by cells but by protocells, that is, by progenotes because this is precisely the definition of a progenote. This conclusion would be strengthened by the observation that both GlyRS and LysRS originating in the phyletic lineages leading to bacteria and archaea, would demonstrate that, more generally, proteins were most likely still in rapid and progressive evolution. Namely, a polyphyletic origin of proteins which would qualify at least the initial phase of the evolutionary stage of the ancestor of bacteria and that of archaea as stages belonging to the progenote.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    遗传密码扩展(GCE)是一种强大的策略,可使用工程改造的tRNA和氨酰tRNA合成酶(aaRSs)扩展生物体的遗传密码,以将非规范氨基酸掺入蛋白质中。虽然GCE为合成生物学开辟了新的可能性,关于外源性aaRS/tRNA对的潜在副作用知之甚少。在这项研究中,我们研究了外源aaRS和琥珀抑制子tRNA对大肠杆菌基因表达的影响。我们发现在DH10βΔcyaA中,用F1RP/F2P双混合系统改造,在升高的温度下,外源aaRS/tRNA对细胞三磷酸腺苷的高消耗率诱导了由环状AMP受体蛋白(CRP)调节的基因表达的温度敏感性。我们利用这种温度敏感性在大肠杆菌中创造了一种新型的生物与门,对对苯甲酰苯丙氨酸(BzF)和低温,使用大肠杆菌分支杆菌酸变位酶的BzF依赖性变体和百日咳博德特氏菌腺苷酸环化酶的分裂亚基。我们的研究为外源aaRS/tRNA对的意外影响提供了新的见解,并为构建生物逻辑门提供了新的方法。
    Genetic code expansion (GCE) is a powerful strategy that expands the genetic code of an organism for incorporating noncanonical amino acids into proteins using engineered tRNAs and aminoacyl-tRNA synthetases (aaRSs). While GCE has opened up new possibilities for synthetic biology, little is known about the potential side effects of exogenous aaRS/tRNA pairs. In this study, we investigated the impact of exogenous aaRS and amber suppressor tRNA on gene expression in Escherichia coli. We discovered that in DH10β ΔcyaA, transformed with the F1RP/F2P two-hybrid system, the high consumption rate of cellular adenosine triphosphate by exogenous aaRS/tRNA at elevated temperatures induces temperature sensitivity in the expression of genes regulated by the cyclic AMP receptor protein (CRP). We harnessed this temperature sensitivity to create a novel biological AND gate in E. coli, responsive to both p-benzoylphenylalanine (BzF) and low temperature, using a BzF-dependent variant of E. coli chorismate mutase and split subunits of Bordetella pertussis adenylate cyclase. Our study provides new insights into the unexpected effects of exogenous aaRS/tRNA pairs and offers a new approach for constructing a biological logic gate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    遗传密码包含遗传编码的氨基酸的字母。十个阶段1氨基酸,包括Gly,阿拉,Ser,Asp,Glu,Val,Leu,Ile,Pro和Thr,可以从益生元环境中获得,而10个阶段2氨基酸,包括Phe,Tyr,Arg,他的,Trp,Asn,Gln,Lys,Cys,和Met,只有后来才能从氨基酸生物合成中获得。在古细菌中,已知最古老的生物,20个氨基酸的标准字母为“冷冻”,随后的3个Gyrs中没有编码其他氨基酸。四十年前,人们发现密码被冻结了,因为所有的生物体都很好地适应了标准氨基酸,以至于形成了寡基因屏障,由完全依赖于标准代码的基因组成,从密码中删除任何一个氨基酸都会导致生存力丧失。一旦确定了密码冻结的原因,程序是由世界各地的科学家设计的,以使新型非规范氨基酸(ncAA)的编码成为可能。这些编码的阶段3ncAA现在超过了代码中的20个规范的阶段2氨基酸。
    The genetic code contains an alphabet of genetically encoded amino acids. The ten Phase 1 amino acids, including Gly, Ala, Ser, Asp, Glu, Val, Leu, Ile, Pro and Thr, were available from the prebiotic environment, whereas the ten Phase 2 amino acids, including Phe, Tyr, Arg, His, Trp, Asn, Gln, Lys, Cys, and Met, became available only later from amino acid biosyntheses. In the archaeon Methanopyrus kandleri, the oldest organism known, the standard alphabet of 20 amino acids was \"frozen\" and no additional amino acid was encoded in the subsequent 3 Gyrs. Four decades ago, it was discovered that the code was frozen because all the organisms were so well adapted to the standard amino acids that oligogenic barriers, consisting of genes that are thoroughly dependent on the standard code, would cause loss of viability upon the deletion of any one amino acid from the code. Once the reason for the freezing of the code was ascertained, procedures were devised by scientists worldwide to enable the encoding of novel noncanonical amino acids (ncAAs). These encoded Phase 3 ncAAs now surpass the 20 canonical Phase 2 amino acids in the code.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在酵母菌属中,其中包括分类顺序Ascoideales,核基因使用非标准遗传密码,其中CUG密码子被翻译成丝氨酸而不是亮氨酸,由于具有异常反密码子CAG的tRNA-Ser。然而,该进化枝中的某些物种还保留了具有相同反密码子的祖先tRNA-Leu基因。其中一个物种,Ascoidoasiatica,已显示具有随机蛋白质组,其中蛋白质在CUG密码子位点含有约50%的Ser和50%的Leu,而以前检查过的酵母物种仅将CUG翻译为Ser。这里,我们调查了存在,养护,以及酵母属中tRNA-Leu(CAG)基因的可能功能。我们对23个菌株的基因组进行了测序,加上以前可用的数据,包括该属的几乎所有已知物种。我们发现大多数酵母属物种具有tRNA-Leu(CAG)和tRNA-Ser(CAG)的基因。然而,tRNA-Leu(CAG)已在S.synnaedendra和S.microspora中丢失,其预测的苜蓿叶结构在所有其他酵母菌属中都是异常的。我们删除了荚膜链球菌的tRNA-Leu(CAG)基因,发现它不是必需的。在荚膜链球菌和发酵链球菌的营养和孢子培养物中的蛋白质组学分析显示仅将CUG翻译为Ser。尽管结构不寻常,tRNA-Leu(CAG)基因显示了酵母物种之间序列保守的证据,特别是在其受体茎和亮氨酸身份元件中,这表明它可能已被保留以执行未知的非翻译功能。
    In the yeast genera Saccharomycopsis and Ascoidea, which comprise the taxonomic order Ascoideales, nuclear genes use a nonstandard genetic code in which CUG codons are translated as serine instead of leucine, due to a tRNA-Ser with the unusual anticodon CAG. However, some species in this clade also retain an ancestral tRNA-Leu gene with the same anticodon. One of these species, Ascoidea asiatica, has been shown to have a stochastic proteome in which proteins contain ∼50% Ser and 50% Leu at CUG codon sites, whereas previously examined Saccharomycopsis species translate CUG only as Ser. Here, we investigated the presence, conservation, and possible functionality of the tRNA-Leu(CAG) gene in the genus Saccharomycopsis. We sequenced the genomes of 23 strains that, together with previously available data, include almost every known species of this genus. We found that most Saccharomycopsis species have genes for both tRNA-Leu(CAG) and tRNA-Ser(CAG). However, tRNA-Leu(CAG) has been lost in Saccharomycopsis synnaedendra and Saccharomycopsis microspora, and its predicted cloverleaf structure is aberrant in all the other Saccharomycopsis species. We deleted the tRNA-Leu(CAG) gene of Saccharomycopsis capsularis and found that it is not essential. Proteomic analyses in vegetative and sporulating cultures of S. capsularis and Saccharomycopsis fermentans showed only translation of CUG as Ser. Despite its unusual structure, the tRNA-Leu(CAG) gene shows evidence of sequence conservation among Saccharomycopsis species, particularly in its acceptor stem and leucine identity elements, which suggests that it may have been retained in order to carry out an unknown nontranslational function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    遗传密码扩展技术允许将非天然氨基酸(UAA)掺入蛋白质中,这对蛋白质工程很有用,合成生物学,和基因治疗。尽管其在各种物种中的潜在应用,丝状真菌仍未被探索。本研究旨在通过在构巢曲霉中开发这些技术来解决这一差距。我们将琥珀终止密码子引入了在A.nidulans中表达的报告基因内的特定序列中,并用CUA替换了真菌tRNATyr的反密码子。这导致了靶蛋白的合成,确认真菌中琥珀抑制的发生。当外源大肠杆菌tRNATyrCUA(Ec。tRNATyrCUA)和大肠杆菌酪氨酰-tRNA(Ec。TyrRS)被引入纳杜兰,他们通过琥珀抑制成功合成了靶蛋白,并被证明与真菌翻译系统正交。通过替换野生型Ec。具有对UAAO-甲基-L-酪氨酸具有更高亲和力的突变体的TyrRS,真菌系统能够启动UAA标记蛋白(UAA蛋白)的合成。我们通过几个合理的修饰进一步增加了UAA蛋白的表达水平。一种遗传密码扩展技术的成功开发,为研究真菌蛋白质的结构和功能提供了一种潜在的有价值的方法。
    Genetic code expansion technology allows the incorporation of unnatural amino acids (UAAs) into proteins, which is useful in protein engineering, synthetic biology, and gene therapy. Despite its potential applications in various species, filamentous fungi remain unexplored. This study aims to address this gap by developing these techniques in Aspergillus nidulans. We introduced an amber stop codon into a specific sequence within the reporter gene expressed in A. nidulans and replaced the anticodon of the fungal tRNATyr with CUA. This resulted in the synthesis of the target protein, confirming the occurrence of amber suppression in the fungus. When exogenous E. coli tRNATyrCUA (Ec. tRNATyrCUA) and E. coli tyrosyl-tRNA (Ec.TyrRS) were introduced into A. nidulans, they successfully synthesized the target protein via amber suppression and were shown to be orthogonal to the fungal translation system. By replacing the wild-type Ec.TyrRS with a mutant with a higher affinity for the UAA O-methyl-L-tyrosine, the fungal system was able to initiate the synthesis of the UAA-labeled protein (UAA-protein). We further increased the expression level of the UAA-protein through several rational modifications. The successful development of a genetic code expansion technique for A. nidulans has introduced a potentially valuable approach to the study of fungal protein structure and function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号