Genes, MCC

  • 文章类型: Journal Article
    V600EBRAF mutated metastatic colorectal cancer (mCRC) is a subtype (10%) with overall poor prognosis, but the clinical experience suggests a great heterogeneity in survival. It is still unexplored the real distribution of traditional and innovative biomarkers among V600EBRAF mutated mCRC and which is their role in the improvement of clinical prediction of survival outcomes.
    Data and tissue specimens from 155 V600EBRAF mutated mCRC patients treated at eight Italian Units of Oncology were collected. Specimens were analysed by means of immunohistochemistry profiling performed on tissue microarrays. Primary endpoint was overall survival (OS).
    CDX2 loss conferred worse OS (HR = 1.72, 95%CI 1.03-2.86, p = 0.036), as well as high CK7 expression (HR = 2.17, 95%CI 1.10-4.29, p = 0.026). According to Consensus Molecular Subtypes (CMS), CMS1 patients had better OS compared to CMS2-3/CMS4 (HR = 0.37, 95%CI 0.19-0.71, p = 0.003). Samples showing less TILs had worse OS (HR = 1.72, 95%CI 1.16-2.56, p = 0.007). Progression-free survival analyses led to similar results. At multivariate analysis, CK7 and CMS subgrouping retained their significant correlation with OS.
    The present study provides new evidence on how several well-established biomarkers perform in a homogenousV600EBRAF mutated mCRC population, with important and independent information added to standard clinical prognosticators. These data could be useful to inform further translational research, for patients\' stratification in clinical trials and in routine clinical practice to better estimate patients\' prognosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The early events by which inflammation promotes cancer are still not fully defined. The MCC gene is silenced by promoter methylation in colitis-associated and sporadic colon tumors, but its functional significance in precancerous lesions or polyps is not known. Here, we aimed to determine the impact of Mcc deletion on the cellular pathways and carcinogenesis associated with inflammation in the mouse proximal colon.
    We generated knockout mice with deletion of Mcc in the colonic/intestinal epithelial cells (MccΔIEC) or in the whole body (MccΔ/Δ). Drug-induced lesions were analyzed by transcriptome profiling (at 10 weeks) and histopathology (at 20 weeks). Cell-cycle phases and DNA damage proteins were analyzed by flow cytometry and Western blot of hydrogen peroxide-treated mouse embryo fibroblasts.
    Transcriptome profiling of the lesions showed a strong response to colon barrier destruction, such as up-regulation of key inflammation and cancer-associated genes as well as 28 interferon γ-induced guanosine triphosphatase genes, including the homologs of Crohn\'s disease susceptibility gene IRGM. These features were shared by both Mcc-expressing and Mcc-deficient mice and many of the altered gene expression pathways were similar to the mesenchymal colorectal cancer subtype known as consensus molecular subtype 4 (CMS4). However, Mcc deletion was required for increased carcinogenesis in the lesions, with adenocarcinoma in 59% of MccΔIEC compared with 19% of Mcc-expressing mice (P = .002). This was not accompanied by hyperactivation of β-catenin, but Mcc deletion caused down-regulation of DNA repair genes and a disruption of DNA damage signaling.
    Loss of Mcc may promote cancer through a failure to repair inflammation-induced DNA damage. We provide a comprehensive transcriptome data set of early colorectal lesions and evidence for the in vivo significance of MCC silencing in colorectal cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Clinical Trial, Phase II
    Cetuximab is a standard-of-care treatment for RAS wild-type metastatic colorectal cancer (mCRC) but not for those harbor a KRAS mutation since MAPK pathway is constitutively activated. Nevertheless, cetuximab also exerts its effect by its immunomodulatory activity despite the presence of RAS mutation. The aim of this study was to determine the impact of polymorphism FcγRIIIa V158F and killer immunoglobulin-like receptor (KIR) genes on the outcome of mCRC patients with KRAS mutations treated with cetuximab. This multicenter Phase II clinical trial included 70 mCRC patients with KRAS mutated. We found KIR2DS4 gene was significantly associated with OS (HR 2.27; 95% CI, 1.08-4.77; P = 0.03). In non-functional receptor homozygotes the median OS was 2.6 months longer than in carriers of one copy of full receptor. Multivariate analysis confirmed KIR2DS4 as a favorable prognostic marker for OS (HR 6.71) in mCRC patients with KRAS mutation treated with cetuximab. These data support the potential therapeutic of cetuximab in KRAS mutated mCRC carrying non-functional receptor KIR2DS4 since these patients significantly prolong their OS even after heavily treatment. KIR2DS4 typing could be used as predictive marker for identifying RAS mutated patients that could benefit from combination approaches of anti-EGFR monoclonal antibodies and other immunotherapies to overcome the resistance mediated by mutation in RAS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Reduction of sulfite to sulfide is an essential step in the biogeochemical sulfur cycle. The Epsilonproteobacterium Wolinella succinogenes uses the copper-containing octahaem cytochrome c sulfite reductase MccA to respire sulfite. MccA is encoded by the first gene of the mcc gene cluster, whose transcription is apparently induced by the two-component regulatory system MccRS. It has been proposed that the iron‑sulfur protein MccC, the putative quinol dehydrogenase MccD, the copper chaperone MccL as well as menaquinone-6 (MK6) and/or 8-methylmenaquinone-6 (8-MMK6) are involved in the electron transport chain of W. succinogenes sulfite respiration. Here, non-polar W. succinogenes mutants were constructed that lacked MccC, MccD, MccL or the 8-MMK6-producing MK6 methyltransferase MqnK. Each mutant possessed a frameshift-corrected mccR gene, thus inducing mcc expression in the presence of a mixture of fumarate and sulfite as terminal electron acceptors. Under these conditions, growth by sulfite respiration of cells lacking MccA, MccC or MccD was found to be abolished. However, cells lacking MccL or 8-MMK6 still coupled formate oxidation to sulfite reduction and grew by sulfite respiration to some extent. The results indicate that MccR, MccC, MccD, MccL and 8-MMK6 are essential or significant components of W. succinogenes sulfite respiration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Hirschsprung disease (HSCR) is a genetic disorder characterized by the absence of neural crest cells in parts of the intestine. This study aims to investigate the association of vesicle-associated membrane protein 5 (VAMP5) and mutated in colorectal cancer (MCC) genetic polymorphisms and their correlated risks with HSCR. We examined the association in four polymorphisms (rs10206961, rs1254900 and rs14242 in VAMP5, rs11241200 in MCC) and HSCR susceptibility in a Southern Chinese population composed of 1473 cases and 1469 controls. Two variants in VAMP5 were replicated as associated with HSCR. Interestingly, we clarified SNPs rs10206961 and rs1254900 in VAMP5 are more essential for patients with long-segment aganglionosis (LHSCR). Relatively high expression correlation was observed between VAMP5 and MCC using data from public database showing there may exist potential genetic interactions. SNP interaction was cross-examined by logistic regression and multifactor dimensionality reduction analysis revealing that VAMP5 rs1254900 and MCC rs11241200 were interacting significantly, thereby contributing to the risk of HSCR. The results suggest that significant associations of the rs10206961 and rs14242 in VAMP5 with an increased risk of HSCR in Southern Chinese, especially in LHSCR patients. This study provided new evidence of epistatic association of VAMP5 and MCC with increased risk of HSCR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    BACKGROUND: Identification of novel genetic risk factors is imperative for a better understanding of B lymphomagenesis and for the development of novel therapeutic strategies. TRAF3, a critical regulator of B cell survival, was recently recognized as a tumor suppressor gene in B lymphocytes. The present study aimed to identify novel oncogenes involved in malignant transformation of TRAF3-deficient B cells.
    METHODS: We used microarray analysis to identify genes differentially expressed in TRAF3-/- mouse splenic B lymphomas. We employed lentiviral vector-mediated knockdown or overexpression to manipulate gene expression in human multiple myeloma (MM) cell lines. We analyzed cell apoptosis and proliferation using flow cytometry, and performed biochemical studies to investigate signaling mechanisms. To delineate protein-protein interactions, we applied affinity purification followed by mass spectrometry-based sequencing.
    RESULTS: We identified mutated in colorectal cancer (MCC) as a gene strikingly up-regulated in TRAF3-deficient mouse B lymphomas and human MM cell lines. Aberrant up-regulation of MCC also occurs in a variety of primary human B cell malignancies, including non-Hodgkin lymphoma (NHL) and MM. In contrast, MCC expression was not detected in normal or premalignant TRAF3-/- B cells even after treatment with B cell stimuli, suggesting that aberrant up-regulation of MCC is specifically associated with malignant transformation of B cells. In elucidating the functional roles of MCC in malignant B cells, we found that lentiviral shRNA vector-mediated knockdown of MCC induced apoptosis and inhibited proliferation in human MM cells. Experiments of knockdown and overexpression of MCC allowed us to identify several downstream targets of MCC in human MM cells, including phospho-ERK, c-Myc, p27, cyclin B1, Mcl-1, caspases 8 and 3. Furthermore, we identified 365 proteins (including 326 novel MCC-interactors) in the MCC interactome, among which PARP1 and PHB2 were two hubs of MCC signaling pathways in human MM cells.
    CONCLUSIONS: Our results indicate that in sharp contrast to its tumor suppressive role in colorectal cancer, MCC functions as an oncogene in B cells. Our findings suggest that MCC may serve as a diagnostic marker and therapeutic target in B cell malignancies, including NHL and MM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    During vertebrate gastrulation, a complex set of mass cellular rearrangements shapes the embryonic body plan and appropriately positions the organ primordia. In zebrafish and Xenopus, convergence and extension (CE) movements simultaneously narrow the body axis mediolaterally and elongate it from head to tail. This process is governed by polarized cell behaviors that are coordinated by components of the non-canonical, β-catenin-independent Wnt signaling pathway, including Wnt5b and the transmembrane planar cell polarity (PCP) protein Vangl2. However, the intracellular events downstream of Wnt/PCP signals are not fully understood. Here, we show that zebrafish mutated in colorectal cancer (mcc), which encodes an evolutionarily conserved PDZ domain-containing putative tumor suppressor, is required for Wnt5b/Vangl2 signaling during gastrulation. Knockdown of mcc results in CE phenotypes similar to loss of vangl2 and wnt5b, whereas overexpression of mcc robustly rescues the depletion of wnt5b, vangl2 and the Wnt5b tyrosine kinase receptor ror2. Biochemical experiments establish a direct physical interaction between Mcc and the Vangl2 cytoplasmic tail. Lastly, CE defects in mcc morphants are suppressed by downstream activation of RhoA and JNK. Taken together, our results identify Mcc as a novel intracellular effector of non-canonical Wnt5b/Vangl2/Ror2 signaling during vertebrate gastrulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    \'Mutated in Colorectal Cancer\' (MCC) is emerging as a multifunctional protein that affects several cellular processes and pathways. Although the MCC gene is rarely mutated in colorectal cancer, it is frequently silenced through promoter methylation. Previous studies have reported loss of heterozygosity (LOH) of the closely linked MCC and APC loci in both colorectal and lung cancers. APC promoter methylation is a marker of poor survival in non-small cell lung cancer (NSCLC). However, MCC methylation has not been previously studied in lung cancer. Therefore, we wanted to determine if MCC is silenced through promoter methylation in lung cancer and whether this methylation is associated with LOH of the MCC locus or methylation of the APC gene. Three polymorphic markers for the APC/MCC locus were analysed for LOH in 64 NSCLC specimens and matching normal tissues. Promoter methylation of both genes was determined using methylation specific PCR in primary tumours. LOH of the three markers was found in 41-49% of the specimens. LOH within the MCC locus was less common in adenocarcinoma (ADC) (29%) than in squamous cell carcinoma (SCC) (72%; P=0.006) or large cell carcinoma (LCC) (75%; P=0.014). However, this LOH was not accompanied by MCC promoter methylation, which was found in only two cancers (3%). In contrast, 39% of the specimens showed APC methylation, which was more common in ADC (58%) than in SCC (13%). Western blotting revealed that MCC was expressed in a subset of lung tissue specimens but there was marked variation between patients rather than between cancer and matching non-cancer tissue specimens. In conclusion, we have shown that promoter methylation of the APC gene does not extend to the neighbouring MCC gene in lung cancer, but LOH is found at both loci. The variable levels of MCC expression were not associated with promoter methylation and may be regulated through other cellular mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Comparative Study
    BACKGROUND: We are developing a cross-species comparison strategy to distinguish between cancer driver- and passenger gene alteration candidates, by utilizing the difference in genomic location of orthologous genes between the human and other mammals. As an initial test of this strategy, we conducted a pilot study with human colorectal cancer (CRC) and its mouse model C57BL/6J ApcMin/+, focusing on human 5q22.2 and 18q21.1-q21.2.
    METHODS: We first performed bioinformatics analysis on the evolution of 5q22.2 and 18q21.1-q21.2 regions. Then, we performed exon-targeted sequencing, real time quantitative polymerase chain reaction (qPCR), and real time quantitative reverse transcriptase PCR (qRT-PCR) analyses on a number of genes of both regions with both human and mouse colon tumors.
    RESULTS: These two regions (5q22.2 and 18q21.1-q21.2) are frequently deleted in human CRCs and encode genuine colorectal tumor suppressors APC and SMAD4. They also encode genes such as MCC (mutated in colorectal cancer) with their role in CRC etiology unknown. We have discovered that both regions are evolutionarily unstable, resulting in genes that are clustered in each human region being found scattered at several distinct loci in the genome of many other species. For instance, APC and MCC are within 200 kb apart in human 5q22.2 but are 10 Mb apart in the mouse genome. Importantly, our analyses revealed that, while known CRC driver genes APC and SMAD4 were disrupted in both human colorectal tumors and tumors from ApcMin/+ mice, the questionable MCC gene was disrupted in human tumors but appeared to be intact in mouse tumors.
    CONCLUSIONS: These results indicate that MCC may not actually play any causative role in early colorectal tumorigenesis. We also hypothesize that its disruption in human CRCs is likely a mere result of its close proximity to APC in the human genome. Expanding this pilot study to the entire genome may identify more questionable genes like MCC, facilitating the discovery of new CRC driver gene candidates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The CRYSTAL study demonstrated an advantage in terms of objective response and progression-free survival for the FOLFIRI-cetuximab combination compared with first-line FOLFIRI for patients with metastatic colorectal cancer. The results of an ancillary biological study with screening for a KRAS gene mutation in 540 patients were reported at the 2008 American Society of Clinical Oncology congress. The analysis confirmed the value of adding cetuximab only in the absence of KRAS mutation. These results led to recommend restriction of the use of cetuximab in Europe to patients with a tumour bearing wild-type KRAS. How should this apparent simplification be integrated into clinical practice? The FOLFIRI-cetuximab combination is certainly a useful supplementary first-line option although its place in relation to other high-dose regimens (high-dose FOLFIRI, FOLFOXIRI or FOLFOX-7), conventional chemotherapy plus bevacizumab, or even a fluoropyrimidine alone in the case of unresectable metastases, has yet to be specified. For subsequent lines, no study has prospectively assessed the value of the chemotherapy--anti-epidermal growth factor receptor combination as a function of KRAS status. Should the absence of objective response constantly observed in retrospective analyses in patients with a tumour presenting a KRAS mutation definitively exclude these patients while stable disease (and potentially a slight gain in survival) may be obtained?
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号