Gene Expression Regulation, Archaeal

基因表达调控,考古
  • 文章类型: Journal Article
    为了应对高盐度环境,卤代古菌通常采用双精氨酸易位(Tat)途径以折叠状态跨细胞质膜运输分泌蛋白,包括能够自动催化活化的Tat依赖性细胞外枯草杆菌酶(卤代溶素)。一些卤溶素,例如NatrinemagariJ7-2的SptA,是在对数后期产生的,以防止卤代古菌中细胞蛋白的过早酶激活和蛋白水解损伤;但是,生长阶段依赖的卤溶素表达的调节机制仍然未知。在这项研究中,进行DNA-蛋白质下拉测定以鉴定与菌株J7-2中编码卤溶素SptA的sptA的5'侧翼序列结合的蛋白质,揭示了TrmBL2样转录因子(NgTrmBL2)。菌株J7-2的ΔtrmBL2突变体显示SptA的产量急剧下降,表明NgTrmBL2正调控sptA表达。纯化的重组NgTrmBL2主要以二聚体形式存在,尽管通过天然PAGE分析检测到单体和高级寡聚形式。电泳迁移率变化测定(EMSAs)的结果表明,NgTrmBL2以非特异性和浓度依赖性方式与sptA的5'侧翼序列结合,并随着KCl浓度的增加而表现出增加的DNA结合亲和力。此外,我们发现嵌入相邻上游基因中的远端顺式调节元件负调节trmBL2的表达,从而参与了依赖生长期的卤代溶素SptA的生物合成。
    目的:胞外蛋白酶在营养代谢中发挥重要作用,功能性蛋白质的加工,和卤代菌的拮抗作用,但是尚未报道过参与调节细胞外蛋白酶表达的转录因子。在这里,我们报道了TrmBL2样转录因子(NgTrmBL2)介导了细胞外蛋白酶的生长阶段依赖性表达,halolysinSptA,haloarchaeonNatrinemagariJ7-2。与其超嗜热古细菌同源物相反,通常被认为是全局转录抑制因子,NgTrmBL2充当sptA表达的正调节因子。本研究为盐生古细菌胞外蛋白酶的转录调控机制和古细菌TrmBL2的功能多样性提供了新的线索。
    To cope with a high-salinity environment, haloarchaea generally employ the twin-arginine translocation (Tat) pathway to transport secretory proteins across the cytoplasm membrane in a folded state, including Tat-dependent extracellular subtilases (halolysins) capable of autocatalytic activation. Some halolysins, such as SptA of Natrinema gari J7-2, are produced at late-log phase to prevent premature enzyme activation and proteolytic damage of cellular proteins in haloarchaea; however, the regulation mechanism for growth phase-dependent expression of halolysins remains largely unknown. In this study, a DNA-protein pull-down assay was performed to identify the proteins binding to the 5\'-flanking sequence of sptA encoding halolysin SptA in strain J7-2, revealing a TrmBL2-like transcription factor (NgTrmBL2). The ΔtrmBL2 mutant of strain J7-2 showed a sharp decrease in the production of SptA, suggesting that NgTrmBL2 positively regulates sptA expression. The purified recombinant NgTrmBL2 mainly existed as a dimer although monomeric and higher-order oligomeric forms were detected by native-PAGE analysis. The results of electrophoretic mobility shift assays (EMSAs) showed that NgTrmBL2 binds to the 5\'-flanking sequence of sptA in a non-specific and concentration-dependent manner and exhibits an increased DNA-binding affinity with the increase in KCl concentration. Moreover, we found that a distal cis-regulatory element embedded in the neighboring upstream gene negatively regulates trmBL2 expression and thus participates in the growth phase-dependent biosynthesis of halolysin SptA.
    OBJECTIVE: Extracellular proteases play important roles in nutrient metabolism, processing of functional proteins, and antagonism of haloarchaea, but no transcription factor involved in regulating the expression of haloaechaeal extracellular protease has been reported yet. Here we report that a TrmBL2-like transcription factor (NgTrmBL2) mediates the growth phase-dependent expression of an extracellular protease, halolysin SptA, of haloarchaeon Natrinema gari J7-2. In contrast to its hyperthermophilic archaeal homologs, which are generally considered to be global transcription repressors, NgTrmBL2 functions as a positive regulator for sptA expression. This study provides new clues about the transcriptional regulation mechanism of extracellular protease in haloarchaea and the functional diversity of archaeal TrmBL2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    甲基辅酶M还原酶(MCR)催化产甲烷的最后一步,微生物代谢负责几乎所有生物甲烷排放到大气中。数十年的生化和结构研究已经产生了详细的见解MCR功能在体外,然而,对MCR和产甲烷菌生理学之间的相互作用知之甚少。例如,虽然通常认为MCR催化产甲烷的限速步骤,这没有经过明确的测试。在这项研究中,为了更直接地了解MCR对甲烷藻生长的控制,我们产生了一个在染色体上具有可诱导的mcr操纵子的菌株,允许仔细控制MCR表达。我们表明,MCR在底物充足的分批培养中不限制生长速率。然而,通过仔细滴定MCR表达,可以获得生长限制状态。经历MCR限制的M.activorans的转录组学分析揭示了具有跨不同功能类别的数百个差异表达基因的全球反应。值得注意的是,MCR限制导致甲硫醚甲基转移酶的强诱导,可能是由于代谢中间体回收不足。此外,mcr操纵子不受转录调节,即,它是组成型表达的,这表明,当细胞经历营养限制或应激条件时,MCR的过量可能是有益的。总之,我们表明,有一个广泛的细胞MCR浓度,可以维持最佳的生长,这表明其他因素,如合成代谢反应,可能是产甲烷生长的限速因素。
    目的:甲烷是一种强效的温室气体,25%的全球变暖在后工业时代。大气中的甲烷主要来源于生物,主要由称为产甲烷菌的微生物产生。甲基辅酶M还原酶(MCR)催化产甲烷菌中的甲烷形成。即使MCR包含ca.10%的细胞蛋白质组,据推测,在产甲烷过程中,它是生长受限的。在这项研究中,我们表明,在底物重复分批培养中生长的甲烷气细胞产生的MCR比其细胞对最佳生长的需求更多。本研究中概述的工具可用于以比纯蛋白质的分离和生化表征更高通量的方式完善MCR中甲烷生成和测定病变的代谢模型。
    Methyl-coenzyme M reductase (MCR) catalyzes the final step of methanogenesis, the microbial metabolism responsible for nearly all biological methane emissions to the atmosphere. Decades of biochemical and structural research studies have generated detailed insights into MCR function in vitro, yet very little is known about the interplay between MCR and methanogen physiology. For instance, while it is routinely stated that MCR catalyzes the rate-limiting step of methanogenesis, this has not been categorically tested. In this study, to gain a more direct understanding of MCR\'s control on the growth of Methanosarcina acetivorans, we generate a strain with an inducible mcr operon on the chromosome, allowing for careful control of MCR expression. We show that MCR is not growth rate-limiting in substrate-replete batch cultures. However, through careful titration of MCR expression, growth-limiting state(s) can be obtained. Transcriptomic analysis of M. acetivorans experiencing MCR limitation reveals a global response with hundreds of differentially expressed genes across diverse functional categories. Notably, MCR limitation leads to strong induction of methylsulfide methyltransferases, likely due to insufficient recycling of metabolic intermediates. In addition, the mcr operon is not transcriptionally regulated, i.e., it is constitutively expressed, suggesting that the overabundance of MCR might be beneficial when cells experience nutrient limitation or stressful conditions. Altogether, we show that there is a wide range of cellular MCR concentrations that can sustain optimal growth, suggesting that other factors such as anabolic reactions might be rate-limiting for methanogenic growth.
    OBJECTIVE: Methane is a potent greenhouse gas that has contributed to ca. 25% of global warming in the post-industrial era. Atmospheric methane is primarily of biogenic origin, mostly produced by microorganisms called methanogens. Methyl-coenzyme M reductase (MCR) catalyzes methane formatio in methanogens. Even though MCR comprises ca. 10% of the cellular proteome, it is hypothesized to be growth-limiting during methanogenesis. In this study, we show that Methanosarcina acetivorans cells grown in substrate-replicate batch cultures produce more MCR than its cellular demand for optimal growth. The tools outlined in this study can be used to refine metabolic models of methanogenesis and assay lesions in MCR in a higher-throughput manner than isolation and biochemical characterization of pure protein.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    许多原核生物利用游泳运动向有利的条件移动并逃避不利的环境。控制细菌鞭毛驱动运动的调节机制已经建立;然而,关于古细菌细胞表面结构推动的游泳运动的调节还知之甚少,Archaella.先前的研究表明,粘附菌毛(PilA1-6)的缺失,IV型菌毛细胞表面结构的亚基,使古细菌Haloferax火山模型无法活动。在这项研究中,我们使用甲磺酸乙酯诱变和运动性测定来鉴定pilaA[1-6]菌株的运动性抑制剂。在确定的八种抑制剂中,其中6个包含古细菌生物合成基因的错义突变,ArlI和ArlJ.在各自的多缺失菌株ΔpilA[1-6]ΔarlI和arlJ突变体构建体中的反式表达中,ΔpilA[1-6]ΔarlJ证实了它们在抑制ΔpilA[1-6]运动性缺陷中的作用。此外,三种抑制因子在cirA中同时存在破坏性错义和无义突变,编码一种拟议的调节蛋白的基因。cirA缺失导致运动过度,而野生型细胞中cirA反式表达导致运动性降低。此外,实时定量PCR分析显示,在野生型细胞中,较高的ARLI表达水平,arlJ,与非运动性对数中期盘状细胞相比,在活动的早期对数期杆状细胞中观察到了古细菌基因arlA1。相反,取决于cirA细胞,在对数早期和中期形成棒,在两个生长期中显示出相似的arl基因表达水平。我们的发现有助于更深入地了解控制古细菌运动性的机制,强调ArlI的参与,ArlJ,和CirA在菌丝介导的运动性调节中的作用。重要古细菌是真核生物的近亲,起着至关重要的生态作用。某些行为,如游泳运动,被认为对古细菌环境适应很重要。Archaella,古细菌的运动性附属物,在进化上与细菌鞭毛不同,驱动古细菌运动性的调节机制在很大程度上是未知的。先前的研究已将IV型菌毛亚基的丢失与古细菌运动性抑制联系起来。这项研究揭示了三种Haloferax火山蛋白参与菌毛蛋白介导的运动调节,在这个未被研究的领域中提供了对运动性调节的更深入的了解,同时也为发现控制古细菌运动性的新机制铺平了道路。了解古细菌细胞过程将有助于阐明古细菌的生态作用以及这些过程的跨域演变。
    Many prokaryotes use swimming motility to move toward favorable conditions and escape adverse surroundings. Regulatory mechanisms governing bacterial flagella-driven motility are well-established; however, little is yet known about the regulation underlying swimming motility propelled by the archaeal cell surface structure, the archaella. Previous research showed that the deletion of the adhesion pilins (PilA1-6), subunits of the type IV pili cell surface structure, renders the model archaeon Haloferax volcanii non-motile. In this study, we used ethyl methanesulfonate mutagenesis and a motility assay to identify motile suppressors of the ∆pilA[1-6] strain. Of the eight suppressors identified, six contain missense mutations in archaella biosynthesis genes, arlI and arlJ. In trans expression of arlI and arlJ mutant constructs in the respective multi-deletion strains ∆pilA[1-6]∆arlI and ∆pilA[1-6]∆arlJ confirmed their role in suppressing the ∆pilA[1-6] motility defect. Additionally, three suppressors harbor co-occurring disruptive missense and nonsense mutations in cirA, a gene encoding a proposed regulatory protein. A deletion of cirA resulted in hypermotility, while cirA expression in trans in wild-type cells led to decreased motility. Moreover, quantitative real-time PCR analysis revealed that in wild-type cells, higher expression levels of arlI, arlJ, and the archaellin gene arlA1 were observed in motile early-log phase rod-shaped cells compared to non-motile mid-log phase disk-shaped cells. Conversely, ∆cirA cells, which form rods during both early- and mid-log phases, exhibited similar expression levels of arl genes in both growth phases. Our findings contribute to a deeper understanding of the mechanisms governing archaeal motility, highlighting the involvement of ArlI, ArlJ, and CirA in pilin-mediated motility regulation.IMPORTANCEArchaea are close relatives of eukaryotes and play crucial ecological roles. Certain behaviors, such as swimming motility, are thought to be important for archaeal environmental adaptation. Archaella, the archaeal motility appendages, are evolutionarily distinct from bacterial flagella, and the regulatory mechanisms driving archaeal motility are largely unknown. Previous research has linked the loss of type IV pili subunits to archaeal motility suppression. This study reveals three Haloferax volcanii proteins involved in pilin-mediated motility regulation, offering a deeper understanding of motility regulation in this understudied domain while also paving the way for uncovering novel mechanisms that govern archaeal motility. Understanding archaeal cellular processes will help elucidate the ecological roles of archaea as well as the evolution of these processes across domains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    反硝化,高盐生态系统中盐生菌中普遍存在的关键生化途径,由于其生态意义,近年来引起了相当大的关注。然而,控制卤古菌呼吸/解毒过程的潜在分子机制和遗传调控在很大程度上仍未被探索。在这项研究中,RNA测序用于比较有氧和反硝化条件下的卤代古菌Haloferaxmediterranei的转录组,在细胞内发生的复杂的代谢改变上发光,例如金属稳态的精确控制。此外,这项研究确定了几个编码转录调节因子和潜在辅助蛋白的基因,它们在反硝化中具有推定的作用。其中包括类似细菌视蛋白的转录激活因子,具有未知功能域的蛋白质(DUF2249),和氰血红蛋白。此外,这项研究深入研究了反硝化的遗传调控,在启动子区域内发现激活许多反硝化相关基因的调节基序。这项研究可作为未来卤代菌分子生物学研究的起点,提供了一条有希望的途径来解开控制盐藻反硝化的复杂机制,一条至关重要的生态道路。进口反硝化,氮循环中的一个基本过程,由于与人为活动密切相关,因此受到了广泛的调查,以及它对全球变暖问题的贡献,主要通过释放N2O排放。尽管我们对反硝化及其影响的理解已经普遍确立,大多数研究都是在非极端环境中使用嗜温微生物进行的。因此,关于极端反硝化者有很大的知识差距,特别是那些居住在高盐环境中的人。这项研究的意义是深入研究盐生古菌反硝化过程,利用完整的反硝化盐生菌Haloferaxmediterranei作为模型生物。这项研究导致了对这种微生物在反硝化条件下的代谢状态的分析,并鉴定了可能参与该途径的调节信号和编码蛋白质的基因。作为未来分子研究的宝贵资源。
    Denitrification, a crucial biochemical pathway prevalent among haloarchaea in hypersaline ecosystems, has garnered considerable attention in recent years due to its ecological implications. Nevertheless, the underlying molecular mechanisms and genetic regulation governing this respiration/detoxification process in haloarchaea remain largely unexplored. In this study, RNA-sequencing was used to compare the transcriptomes of the haloarchaeon Haloferax mediterranei under oxic and denitrifying conditions, shedding light on the intricate metabolic alterations occurring within the cell, such as the accurate control of the metal homeostasis. Furthermore, the investigation identifies several genes encoding transcriptional regulators and potential accessory proteins with putative roles in denitrification. Among these are bacterioopsin-like transcriptional activators, proteins harboring a domain of unknown function (DUF2249), and cyanoglobin. In addition, the study delves into the genetic regulation of denitrification, finding a regulatory motif within promoter regions that activates numerous denitrification-related genes. This research serves as a starting point for future molecular biology studies in haloarchaea, offering a promising avenue to unravel the intricate mechanisms governing haloarchaeal denitrification, a pathway of paramount ecological importance.IMPORTANCEDenitrification, a fundamental process within the nitrogen cycle, has been subject to extensive investigation due to its close association with anthropogenic activities, and its contribution to the global warming issue, mainly through the release of N2O emissions. Although our comprehension of denitrification and its implications is generally well established, most studies have been conducted in non-extreme environments with mesophilic microorganisms. Consequently, there is a significant knowledge gap concerning extremophilic denitrifiers, particularly those inhabiting hypersaline environments. The significance of this research was to delve into the process of haloarchaeal denitrification, utilizing the complete denitrifier haloarchaeon Haloferax mediterranei as a model organism. This research led to the analysis of the metabolic state of this microorganism under denitrifying conditions and the identification of regulatory signals and genes encoding proteins potentially involved in this pathway, serving as a valuable resource for future molecular studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    产甲烷古细菌在全球碳循环中起着关键作用,因为这些微生物在各种厌氧环境中使有机化合物再矿化。巴氏甲烷微生物是一种代谢通用的产甲烷菌,可以利用醋酸盐,甲醇,和H2/CO2合成甲烷。然而,不同底物产甲烷的调节机制尚不清楚。在这项研究中,使用RNA-seq分析来研究在不同底物方案下的M.barkeri生长和基因转录。根据结果,M.barkeri在甲醇下表现出最好的生长,其次是H2/CO2和乙酸盐,这些发现与观察到的不同底物的基因转录丰度变化非常吻合。此外,我们确定了一个新的调节器,MSBRM_RS03855(指定为HdrR),特异性激活M.barkeri中异二硫化物还原酶hdrBCA操纵子的转录。HdrR能够与hdrBCA操纵子启动子结合以调节转录。此外,结构模型分析揭示了一个螺旋-转角-螺旋结构域,这可能与DNA结合有关。一起来看,HdrR用作揭示某些调节因子如何控制产甲烷途径中关键酶的表达的模型。重要的是,巴氏甲烷微生物在全球碳循环中起着关键作用,并有助于全球温度稳态。生物产甲烷的后果是深远的,包括对大气甲烷和二氧化碳浓度的影响,农业,能源生产,废物处理,和人类健康。因此,减少甲烷排放对于实现设定的气候目标至关重要。某些微生物的产甲烷活性可以通过抑制hdrBCA操纵子的转录而大大降低,它编码异二硫化物还原酶。这里,我们提供了在模型产甲烷菌M.barkeri中调节hdrBCA操纵子转录的机制的新见解。结果阐明,HdrR在产甲烷过程中充当异二硫化物还原酶hdrBCA操纵子转录的调节剂,这扩大了我们对控制甲烷生成的独特调节机制的理解。这项研究中提出的发现可以进一步了解遗传调控如何有效减少产甲烷菌引起的甲烷排放。
    Methanogenic archaea play a key role in the global carbon cycle because these microorganisms remineralize organic compounds in various anaerobic environments. The microorganism Methanosarcina barkeri is a metabolically versatile methanogen, which can utilize acetate, methanol, and H2/CO2 to synthesize methane. However, the regulatory mechanisms underlying methanogenesis for different substrates remain unknown. In this study, RNA-seq analysis was used to investigate M. barkeri growth and gene transcription under different substrate regimes. According to the results, M. barkeri showed the best growth under methanol, followed by H2/CO2 and acetate, and these findings corresponded well with the observed variations in genes transcription abundance for different substrates. In addition, we identified a novel regulator, MSBRM_RS03855 (designated as HdrR), which specifically activates the transcription of the heterodisulfide reductase hdrBCA operon in M. barkeri. HdrR was able to bind to the hdrBCA operon promoter to regulate transcription. Furthermore, the structural model analyses revealed a helix-turn-helix domain, which is likely involved in DNA binding. Taken together, HdrR serves as a model to reveal how certain regulatory factors control the expression of key enzymes in the methanogenic pathway.IMPORTANCEThe microorganism Methanosarcina barkeri has a pivotal role in the global carbon cycle and contributes to global temperature homeostasis. The consequences of biological methanogenesis are far-reaching, including impacts on atmospheric methane and CO2 concentrations, agriculture, energy production, waste treatment, and human health. As such, reducing methane emissions is crucial to meeting set climate goals. The methanogenic activity of certain microorganisms can be drastically reduced by inhibiting the transcription of the hdrBCA operon, which encodes heterodisulfide reductases. Here, we provide novel insight into the mechanisms regulating hdrBCA operon transcription in the model methanogen M. barkeri. The results clarified that HdrR serves as a regulator of heterodisulfide reductase hdrBCA operon transcription during methanogenesis, which expands our understanding of the unique regulatory mechanisms that govern methanogenesis. The findings presented in this study can further our understanding of how genetic regulation can effectively reduce the methane emissions caused by methanogens.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    NatronorubrumdaqingenseJX313T是一种极端嗜盐的古细菌,可以在NaCl饱和的环境中生长。大青菜优良的耐盐性使其成为研究天然嗜盐微生物盐胁迫机制的潜在候选者。在这项研究中,转录组分析显示,与维生素B12生物合成相关的三个基因在盐胁迫下上调。对于野生型(WT)菌株JX313T,低盐适应性突变体LND5和维生素B12合成缺陷菌株ΔcobC,外源添加10mg/L的维生素B12可以在最佳和盐胁迫环境中最大化其细胞存活和生物量。cobC的敲除导致菌株生长边界的变化,以及细胞存活和生物量的显著下降,无法合成维生素B12.根据HPLC分析,当外部NaCl浓度(w/v)从17.5%(最佳)增加到22.5%(5%盐胁迫)时,WT中维生素B12的细胞内积累从(11.54±0.44)mg/L显着增加到(15.23±0.20)mg/L。总之,大青菜能够吸收或合成维生素B12以应对盐胁迫,这表明维生素B12在盐胁迫期间是大青菜的特定相容性溶质效应物。
    Natronorubrum daqingense JX313T is an extremely halophilic archaea that can grow in a NaCl-saturated environment. The excellent salt tolerance of N. daqingense makes it a high-potential candidate for researching the salt stress mechanisms of halophilic microorganisms from Natronorubrum. In this study, transcriptome analysis revealed that three genes related to the biosynthesis of vitamin B12 were upregulated in response to salt stress. For the wild-type (WT) strain JX313T, the low-salt adaptive mutant LND5, and the vitamin B12 synthesis-deficient strain ΔcobC, the exogenous addition of 10 mg/L of vitamin B12 could maximize their cell survival and biomass in both optimal and salt stress environments. Knockout of cobC resulted in changes in the growth boundary of the strain, as well as a significant decrease in cell survival and biomass, and the inability to synthesize vitamin B12. According to the HPLC analysis, when the external NaCl concentration (w/v) increased from 17.5% (optimal) to 22.5% (5% salt stress), the intracellular accumulation of vitamin B12 in WT increased significantly from (11.54 ± 0.44) mg/L to (15.23 ± 0.20) mg/L. In summary, N. daqingense is capable of absorbing or synthesizing vitamin B12 in response to salt stress, suggesting that vitamin B12 serves as a specific compatible solute effector for N. daqingense during salt stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    海洋甲烷球菌利用含硒代半胱氨酸(Sec-)的蛋白质(硒蛋白),主要活跃于生物体的初级能量代谢,产甲烷。在硒耗尽期间,M.maripaludis使用一组含有半胱氨酸(Cys)的酶代替Sec。编码这些含Sec-/Cys同种型的基因是唯一已知的表达受细胞硒状态影响的基因。使用蛋白质组学和转录组学,大约。7%和12%,分别,发现所有基因/蛋白质的差异表达/合成响应于硒供应。一些确定的基因涉及甲烷生成,固氮酶功能,和推定的运输者。硒消耗下推定转运蛋白的转录物丰度增加表明该生物努力利用硒的替代来源。已知M.maripaludis利用亚硒酸盐和二甲基硒化物作为硒源。要扩展此列表,对硒敏感的报告菌株与其他9种进行了评估,与环境相关的硒物种。虽然有些效果与亚硒酸盐非常相似,其他在较低浓度下有效利用。相反,硒酸盐和硒代氨基酸仅在非生理高浓度下使用,根本没有使用两种化合物。为了解决硒调节的推定转运蛋白的作用,测试了缺乏一种或两种推定的转运蛋白的M.maripaludis突变菌株利用不同硒物种的能力。在通过功能丧失诱变分析的五种推定的转运蛋白中,似乎没有绝对需要使用任何测试的硒物种,表明它们具有冗余和/或重叠的特异性,或者不是专用的硒转运蛋白。
    目的:虽然过去已经对微生物中的硒代谢进行了深入研究,到目前为止,尚未采用全局基因表达方法。此外,使用不同的硒源,通过生物和非生物过程可以在环境上广泛互换,以前也没有广泛研究过。海洋甲烷球菌JJ非常适合这种分析,由于其已知的硒的使用和可用的遗传工具。因此,通过转录组学和蛋白质组学分析获得了关于马马氏藻硒调节子的总体观点,这激发了进一步的实验。这证明了硒源M.maripaludis的使用以前是未知的。此外,尽管到目前为止没有成功,但有人试图查明潜在的硒转运蛋白基因,以加深我们对这种重要模式生物中微量元素利用的理解。
    Methanococcus maripaludis utilizes selenocysteine- (Sec-) containing proteins (selenoproteins), mostly active in the organism\'s primary energy metabolism, methanogenesis. During selenium depletion, M. maripaludis employs a set of enzymes containing cysteine (Cys) instead of Sec. The genes coding for these Sec-/Cys-containing isoforms were the only genes known of which expression is influenced by the selenium status of the cell. Using proteomics and transcriptomics, approx. 7% and 12%, respectively, of all genes/proteins were found differentially expressed/synthesized in response to the selenium supply. Some of the genes identified involve methanogenesis, nitrogenase functions, and putative transporters. An increase of transcript abundance for putative transporters under selenium depletion indicated the organism\'s effort to tap into alternative sources of selenium. M. maripaludis is known to utilize selenite and dimethylselenide as selenium sources. To expand this list, a selenium-responsive reporter strain was assessed with nine other, environmentally relevant selenium species. While the effect of some was very similar to that of selenite, others were effectively utilized at lower concentrations. Conversely, selenate and seleno-amino acids were only utilized at unphysiologically high concentrations and two compounds were not utilized at all. To address the role of the selenium-regulated putative transporters, M. maripaludis mutant strains lacking one or two of the putative transporters were tested for the capability to utilize the different selenium species. Of the five putative transporters analyzed by loss-of-function mutagenesis, none appeared to be absolutely required for utilizing any of the selenium species tested, indicating they have redundant and/or overlapping specificities or are not dedicated selenium transporters.
    OBJECTIVE: While selenium metabolism in microorganisms has been studied intensively in the past, global gene expression approaches have not been employed so far. Furthermore, the use of different selenium sources, widely environmentally interconvertible via biotic and abiotic processes, was also not extensively studied before. Methanococcus maripaludis JJ is ideally suited for such analyses, thanks to its known selenium usage and available genetic tools. Thus, an overall view on the selenium regulon of M. maripaludis was obtained via transcriptomic and proteomic analyses, which inspired further experimentation. This led to demonstrating the use of selenium sources M. maripaludis was previously not known to employ. Also, an attempt-although so far unsuccessful-was made to pinpoint potential selenium transporter genes, in order to deepen our understanding of trace element utilization in this important model organism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    及时调节碳代谢途径对于细胞过程和防止细胞内代谢物的无效循环至关重要。在盐碱菌中,一种适应高盐的古细菌,糖感应TrmB家族蛋白控制糖异生和其他生物合成途径。值得注意的是,Hbt.Salinarum不利用碳水化合物的能量,在Haloarchia中不常见。我们在糖解通才中表征了TrmB家族转录调节因子,HaloarculaHispanica,为了研究TrmB的靶标和功能,或者它的规则,在具有不同代谢能力的相关物种中保守。在哈尔.西班牙,TrmB与基因组中的15个位点结合并诱导主要涉及糖异生和色氨酸生物合成的基因的表达。Hbt的重要调控点。Salinarum,激活ppsA和抑制pykA,不在哈尔。西班牙裔美国人.与其在Hbt中的作用相反。盐碱菌和糖解超嗜热菌,TrmB不作为全球调节剂:它不直接抑制糖酵解酶的表达,外周途径,如辅因子生物合成,或其他碳源在哈尔的分解代谢。西班牙裔美国人.累计,这些发现表明TrmB调节子的重新布线以及Haloarcha中的代谢网络进化。
    Timely regulation of carbon metabolic pathways is essential for cellular processes and to prevent futile cycling of intracellular metabolites. In Halobacterium salinarum, a hypersaline adapted archaeon, a sugar-sensing TrmB family protein controls gluconeogenesis and other biosynthetic pathways. Notably, Hbt. salinarum does not utilize carbohydrates for energy, uncommon among Haloarchaea. We characterized a TrmB-family transcriptional regulator in a saccharolytic generalist, Haloarcula hispanica, to investigate whether the targets and function of TrmB, or its regulon, is conserved in related species with distinct metabolic capabilities. In Har. hispanica, TrmB binds to 15 sites in the genome and induces the expression of genes primarily involved in gluconeogenesis and tryptophan biosynthesis. An important regulatory control point in Hbt. salinarum, activation of ppsA and repression of pykA, is absent in Har. hispanica. Contrary to its role in Hbt. salinarum and saccharolytic hyperthermophiles, TrmB does not act as a global regulator: it does not directly repress the expression of glycolytic enzymes, peripheral pathways such as cofactor biosynthesis, or catabolism of other carbon sources in Har. hispanica. Cumulatively, these findings suggest rewiring of the TrmB regulon alongside metabolic network evolution in Haloarchaea.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    面对自然环境的快速波动,极端微生物,像嗜热古细菌热球菌一样,对极端条件表现出显著的适应性。然而,我们对它们动态细胞反应的理解仍然有限。这项研究整合了RNA测序和质谱数据,从而阐明了furiosus对热和冷休克胁迫的转录组和蛋白质组反应。我们的结果揭示了这些应激反应后基因和蛋白质表达的快速和动态变化。热休克引发广泛的转录组重编程,由转录调节因子Phr编排,靶向比以前证明的更广泛的基因库。对于热休克签名基因,RNA水平在恢复后迅速恢复到基线,虽然蛋白质水平持续上调,反映了快速但持续的反应。有趣的是,4°C的冷休克在RNA和蛋白质水平上引起明显的短期和长期反应。聚类分析确定了RNA和蛋白质变化趋势一致或相反的基因集,代表分离良好的arCOG组,适合其个体细胞反应。特别是,核糖体蛋白的上调和冷休克反应基因中5'-leadered序列的显着富集表明,翻译调节在冷休克适应过程中很重要。进一步研究转录组学特征,我们发现热应激基因具有基础序列元素,如强启动子和聚(U)终止子,促进相应转录单位的调节反应。我们的研究全面概述了细胞对温度应激的反应,推进我们对超热古细菌应激反应机制的理解,并为促进极端环境中生活的分子适应提供有价值的见解。IMPORTANCEExtreme环境为生活提供了独特的挑战,对极端微生物的研究可以揭示适应这种条件的机制。愤怒的热球菌,超嗜热古细菌,是研究热应激反应机制的模型生物。在这项研究中,我们对RNA测序和质谱数据进行了整合分析,以研究furiosus对热和冷休克应激和恢复的转录组和蛋白质组反应。我们的结果揭示了与这些应激反应相关的基因和蛋白质表达模式的快速和动态变化,以及不同基因集响应不同应激源的协调调节。这些发现为促进极端环境中的生活的分子适应提供了有价值的见解,并增进了我们对超嗜热古细菌应激反应机制的理解。
    OBJECTIVE: Extreme environments provide unique challenges for life, and the study of extremophiles can shed light on the mechanisms of adaptation to such conditions. Pyrococcus furiosus, a hyperthermophilic archaeon, is a model organism for studying thermal stress response mechanisms. In this study, we used an integrated analysis of RNA-sequencing and mass spectrometry data to investigate the transcriptomic and proteomic responses of P. furiosus to heat and cold shock stress and recovery. Our results reveal the rapid and dynamic changes in gene and protein expression patterns associated with these stress responses, as well as the coordinated regulation of different gene sets in response to different stressors. These findings provide valuable insights into the molecular adaptations that facilitate life in extreme environments and advance our understanding of stress response mechanisms in hyperthermophilic archaea.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The biology of Korarchaeia remains elusive due to the lack of genome representatives. Here, we reconstruct 10 closely related metagenome-assembled genomes from hot spring habitats and place them into a single species, proposed herein as Panguiarchaeum symbiosum. Functional investigation suggests that Panguiarchaeum symbiosum is strictly anaerobic and grows exclusively in thermal habitats by fermenting peptides coupled with sulfide and hydrogen production to dispose of electrons. Due to its inability to biosynthesize archaeal membranes, amino acids, and purines, this species likely exists in a symbiotic lifestyle similar to DPANN archaea. Population metagenomics and metatranscriptomic analyses demonstrated that genes associated with amino acid/peptide uptake and cell attachment exhibited positive selection and were highly expressed, supporting the proposed proteolytic catabolism and symbiotic lifestyle. Our study sheds light on the metabolism, evolution, and potential symbiotic lifestyle of Panguiarchaeum symbiosum, which may be a unique host-dependent archaeon within the TACK superphylum.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号