Gastrulation

原肠胚形成
  • 文章类型: Journal Article
    脊椎动物的组织者在建立胚胎的主要(前后)轴方面起着至关重要的作用:它使周围的外胚层神经化,并且是在伸长过程中产生轴向和旁轴中内胚层的细胞的迁移部位。小鸡组织者在伸长开始时成为茎区;它停止从邻近的外胚层募集细胞,并在原肠胚形成阶段结束时从其包含的少量常驻细胞中产生其所有衍生物。对该茎区的分子身份一无所知。这里,我们专门标记了组织者的长期驻留细胞,并将其RNA-seq谱与相邻细胞群的RNA-seq谱进行了比较。通过逆转录聚合酶链反应和原位杂交进行筛选,鉴定出四个基因(WIF1,PTGDS,ThPO和UCKL1)仅在组织者区域成为茎区时上调,并在轴向伸长期间保持表达。在专门标记成熟组织者的常驻细胞的实验中,我们发现只有这些细胞表达这些基因。这些发现在分子上将组织者定义为茎区,并为了解该区域的设置提供了关键,其细胞行为的分子控制和轴向生长区的演化。
    The vertebrate organizer plays a crucial role in building the main (antero-posterior) axis of the embryo: it neuralizes the surrounding ectoderm, and is the site of emigration for cells making axial and paraxial mesendoderm during elongation. The chick organizer becomes a stem zone at the onset of elongation; it stops recruiting cells from the neighbouring ectoderm and generates all its derivatives from the small number of resident cells it contains at the end of gastrulation stages. Nothing is known about the molecular identity of this stem zone. Here, we specifically labelled long-term resident cells of the organizer and compared their RNA-seq profile to that of the neighbouring cell populations. Screening by reverse transcription-polymerase chain reaction and in situ hybridization identified four genes (WIF1, PTGDS, ThPO and UCKL1) that are upregulated only in the organizer region when it becomes a stem zone and remain expressed there during axial elongation. In experiments specifically labelling the resident cells of the mature organizer, we show that only these cells express these genes. These findings molecularly define the organizer as a stem zone and offer a key to understanding how this zone is set up, the molecular control of its cells\' behaviour and the evolution of axial growth zones.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在过去的十年里,单细胞方法已成为研究基因表达动力学的金标准,细胞异质性,和样品中的细胞状态。在单细胞进步之前,在早期发育过程中捕获动态细胞景观和快速细胞过渡的可行性是有限的。在本文中,我们设计了一个稳健的流程,对胚胎期E6.5~E8天的小鼠胚胎进行单细胞和细胞核分析,对应于胃泌素的开始和完成.产气是发育过程中建立三个胚层的基本过程:中胚层,外胚层,和内胚层,对器官发生至关重要。关于应用于野生型围胃胚胎的单细胞组学,有大量文献。然而,突变胚胎的单细胞分析仍然很少,并且通常仅限于FACS分类的种群。这部分是由于与基因分型需求相关的技术限制,定时怀孕,每次怀孕所需基因型的胚胎计数,每个胚胎在这些阶段的细胞数量。这里,提出了一种旨在克服这些限制的方法。该方法建立了育种和定时妊娠指南,以实现具有所需基因型的同步妊娠的更高机会。胚胎分离过程中的优化步骤与同一天的基因分型方案(3小时)相结合,允许在同一天进行基于微滴的单细胞,确保细胞的高活力和稳健的结果。该方法还包括从胚胎中最佳核分离的指南。因此,这些方法增加了单细胞方法在原肠胚形成阶段突变胚胎的可行性.我们预计这种方法将有助于分析突变如何塑造胃细胞的细胞景观。
    Over the last decade, single-cell approaches have become the gold standard for studying gene expression dynamics, cell heterogeneity, and cell states within samples. Before single-cell advances, the feasibility of capturing the dynamic cellular landscape and rapid cell transitions during early development was limited. In this paper, a robust pipeline was designed to perform single-cell and nuclei analysis on mouse embryos from embryonic day E6.5 to E8, corresponding to the onset and completion of gastrulation. Gastrulation is a fundamental process during development that establishes the three germinal layers: mesoderm, ectoderm, and endoderm, which are essential for organogenesis. Extensive literature is available on single-cell omics applied to wild-type perigastrulating embryos. However, single-cell analysis of mutant embryos is still scarce and often limited to FACS-sorted populations. This is partially due to the technical constraints associated with the need for genotyping, timed pregnancies, the count of embryos with desired genotypes per pregnancy, and the number of cells per embryo at these stages. Here, a methodology is presented designed to overcome these limitations. This method establishes breeding and timed pregnancy guidelines to achieve a higher chance of synchronized pregnancies with desired genotypes. Optimization steps in the embryo isolation process coupled with a same-day genotyping protocol (3 h) allow for microdroplet-based single-cell to be performed on the same day, ensuring the high viability of cells and robust results. This method further includes guidelines for optimal nuclei isolations from embryos. Thus, these approaches increase the feasibility of single-cell approaches of mutant embryos at the gastrulation stage. We anticipate that this method will facilitate the analysis of how mutations shape the cellular landscape of the gastrula.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    简单的机器是利用机械优势施加力的基本设备。动物和植物通过各种简单机器的操作进行自组装。不同物种的胚胎驱动这些简单的机器来驱动几何变换,将无序的细胞团转换成具有离散身份和功能的有组织的结构。这些转换本质上与自组织和自组装的顺序和重叠步骤耦合。通过细胞和组织的分子组成及其信息网络探索了自组织的过程。相比之下,努力理解自组装的简单机器必须将分子组成与力学的物理原理相结合。本入门与阐明这些机器的操作有关,专注于形态发生的“问题”。理解自组装的进展将最终连接分子-,亚细胞-,植物和动物的细胞和中尺度功能以及它们与更大的生态和环境影响相互作用的能力。
    A simple machine is a basic of device that takes mechanical advantage to apply force. Animals and plants self-assemble through the operation of a wide variety of simple machines. Embryos of different species actuate these simple machines to drive the geometric transformations that convert a disordered mass of cells into organized structures with discrete identities and function. These transformations are intrinsically coupled to sequential and overlapping steps of self-organization and self-assembly. The processes of self-organization have been explored through the molecular composition of cells and tissues and their information networks. By contrast, efforts to understand the simple machines underlying self-assembly must integrate molecular composition with the physical principles of mechanics. This primer is concerned with effort to elucidate the operation of these machines, focusing on the \"problem\" of morphogenesis. Advances in understanding self-assembly will ultimately connect molecular-, subcellular-, cellular- and meso-scale functions of plants and animals and their ability to interact with larger ecologies and environmental influences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    胚胎发生中的生物力学是一个动态场,它将塑造哺乳动物胚胎的第一天的物理力和生物过程交织在一起。从囊胚化过程中的第一次细胞命运分叉到原肠胚化过程中复杂的对称性破坏和组织重塑,机械提示在细胞命运决定和组织模式中显得至关重要。小鼠和人类胚胎培养的最新进展,哺乳动物胚胎的干细胞建模,生物材料的设计揭示了细胞力的作用,细胞极化,以及影响细胞分化和形态发生的细胞外基质。本章强调了胚泡形成中生物物理机制的基本功能,胚胎植入,和早期原肠胚形成,细胞骨架和细胞外基质刚度之间的相互作用协调了胚胎发生和胎盘规范的复杂性。像胚状体这样的体外模型的发展,gastruloids,和其他类型的胚状体,已经开始忠实地概括人类的发展阶段,为探索早期发展的生物物理基础提供了新的途径。合成生物学和先进生物材料的整合正在提高我们模拟和研究这些过程的精度。展望未来,我们强调CRISPR介导的基因组扰动与实时成像相结合的潜力,以发现新的机械敏感途径,并应用工程生物材料来微调有利于胚胎发育的机械条件.这种合成不仅弥合了实验模型和体内条件之间的差距,以推进哺乳动物胚胎发生的基本发育生物学,但也为利用生物力学见解为再生医学提供信息奠定了基础。
    Biomechanics in embryogenesis is a dynamic field intertwining the physical forces and biological processes that shape the first days of a mammalian embryo. From the first cell fate bifurcation during blastulation to the complex symmetry breaking and tissue remodeling in gastrulation, mechanical cues appear critical in cell fate decisions and tissue patterning. Recent strides in mouse and human embryo culture, stem cell modeling of mammalian embryos, and biomaterial design have shed light on the role of cellular forces, cell polarization, and the extracellular matrix in influencing cell differentiation and morphogenesis. This chapter highlights the essential functions of biophysical mechanisms in blastocyst formation, embryo implantation, and early gastrulation where the interplay between the cytoskeleton and extracellular matrix stiffness orchestrates the intricacies of embryogenesis and placenta specification. The advancement of in vitro models like blastoids, gastruloids, and other types of embryoids, has begun to faithfully recapitulate human development stages, offering new avenues for exploring the biophysical underpinnings of early development. The integration of synthetic biology and advanced biomaterials is enhancing the precision with which we can mimic and study these processes. Looking ahead, we emphasize the potential of CRISPR-mediated genomic perturbations coupled with live imaging to uncover new mechanosensitive pathways and the application of engineered biomaterials to fine-tune the mechanical conditions conducive to embryonic development. This synthesis not only bridges the gap between experimental models and in vivo conditions to advancing fundamental developmental biology of mammalian embryogenesis, but also sets the stage for leveraging biomechanical insights to inform regenerative medicine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在啮齿动物胚胎之外,对哺乳动物原肠胚形成过程中的细胞命运决定知之甚少。猪胚胎的胚胎盘反映了人类,使它们成为研究胃肠病的有用代理。在这里,我们提出了猪原肠胚形成的单细胞转录组学图谱,揭示细胞命运出现的动态,以及管理早期猪的保守和不同的基因程序,灵长类动物,和鼠的发展。我们强调胚胎外细胞类型的异时间性,尽管细胞类型特异性转录程序广泛保守。我们将这些发现与功能调查相结合,勾勒出保守的空间,分子,确定内胚层规范期间的时间事件。我们发现早期FOXA2+/TBXT-胚胎椎间盘细胞直接形成定形内胚层,对比后来出现的FOXA2/TBXT+节点/脊索祖细胞。不像中胚层,这些祖细胞都没有经历上皮-间质转化。内胚层/节点的命运取决于平衡的WNT和下爆炸来源的NODAL,在内胚层分化后消失。这些发现强调了原肠胚形成过程中命运决定中时间和拓扑信号之间的相互作用。
    Cell-fate decisions during mammalian gastrulation are poorly understood outside of rodent embryos. The embryonic disc of pig embryos mirrors humans, making them a useful proxy for studying gastrulation. Here we present a single-cell transcriptomic atlas of pig gastrulation, revealing cell-fate emergence dynamics, as well as conserved and divergent gene programs governing early porcine, primate, and murine development. We highlight heterochronicity in extraembryonic cell-types, despite the broad conservation of cell-type-specific transcriptional programs. We apply these findings in combination with functional investigations, to outline conserved spatial, molecular, and temporal events during definitive endoderm specification. We find early FOXA2 + /TBXT- embryonic disc cells directly form definitive endoderm, contrasting later-emerging FOXA2/TBXT+ node/notochord progenitors. Unlike mesoderm, none of these progenitors undergo epithelial-to-mesenchymal transition. Endoderm/Node fate hinges on balanced WNT and hypoblast-derived NODAL, which is extinguished upon endodermal differentiation. These findings emphasise the interplay between temporal and topological signalling in fate determination during gastrulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:Wnt信号通路在后生动物中高度保守,并调节包括运动在内的大量细胞过程,极性和命运决定,和干细胞稳态。通过非规范Wnt途径调节肌动蛋白细胞骨架可调节适当的脊椎动物原肠胚形成和随后的神经形成所需的细胞极性和细胞迁移。然而,非规范途径如何介导肌动蛋白细胞骨架调节的机制尚未完全了解。
    结果:这里,我们描述了Formin同源蛋白的作用;Wnt信号通路中形态发生2(Daam2)蛋白的相关激活剂。免疫共沉淀试验证实了Daam2与dishevelled2(Dvl2)的结合以及相互作用所需的这些蛋白质中的结构域;此外,Daam2和Dvl2之间的相互作用受Wnt调控。亚细胞定位研究表明,Daam2是细胞质的,并通过调节肌动蛋白丝的形成来调节细胞肌动蛋白细胞骨架。在非洲爪狼发育过程中,Daam2的敲低或缺失特异性地产生神经管闭合缺陷,其指示在非规范信号传导中的作用。此外,我们的研究没有发现Daam2在哺乳动物培养细胞或非洲爪狼胚胎中的经典Wnt信号传导中的任何作用。
    结论:我们的研究共同确定Daam2是非规范Wnt通路的组成部分,而Daam2是脊椎动物发育过程中神经管形态发生的调节剂。
    BACKGROUND: The Wnt signaling pathway is highly conserved in metazoans and regulates a large array of cellular processes including motility, polarity and fate determination, and stem cell homeostasis. Modulation of the actin cytoskeleton via the non-canonical Wnt pathway regulate cell polarity and cell migration that are required for proper vertebrate gastrulation and subsequent neurulation. However, the mechanism(s) of how the non-canonical pathway mediates actin cytoskeleton modulation is not fully understood.
    RESULTS: Herein, we characterize the role of the Formin-homology protein; dishevelled associated activator of morphogenesis 2 (Daam2) protein in the Wnt signaling pathway. Co-immunoprecipitation assays confirm the binding of Daam2 to dishevelled2 (Dvl2) as well as the domains within these proteins required for interaction; additionally, the interaction between Daam2 and Dvl2 was Wnt-regulated. Sub-cellular localization studies reveal Daam2 is cytoplasmic and regulates the cellular actin cytoskeleton by modulating actin filament formation. During Xenopus development, a knockdown or loss of Daam2 specifically produces neural tube closure defects indicative of a role in non-canonical signaling. Additionally, our studies did not identify any role for Daam2 in canonical Wnt signaling in mammalian culture cells or the Xenopus embryo.
    CONCLUSIONS: Our studies together identify Daam2 as a component of the non-canonical Wnt pathway and Daam2 is a regulator of neural tube morphogenesis during vertebrate development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    扭曲胃泌素(TWSG1)是一种进化保守的分泌糖蛋白,它控制骨形态发生蛋白(BMP)的信号传导。TWSG1结合BMP及其拮抗剂Chordin以控制胚胎发育过程中的BMP信号,肾脏再生和癌症。我们报告了TWSG1单独的晶体结构以及与BMP配体的复合物,生长分化因子5.TWSG1由两个不同的,富含二硫键的结构域。TWSG1N端结构域占据BMP上的BMP1型受体结合位点,而C端结构域与Chordin家族成员结合。我们显示TWSG1在细胞信号测定和小鼠结肠类器官中抑制BMP功能。这种抑制功能在不能结合BMP的TWSG1突变体中被消除。果蝇TWSG1直系同源Tsg中的相同突变无法介导早期胚胎的背-腹轴图案化所需的BMP梯度形成。我们的研究揭示了TWSG1抑制BMP信号的进化保守机制。
    Twisted gastrulation (TWSG1) is an evolutionarily conserved secreted glycoprotein which controls signaling by Bone Morphogenetic Proteins (BMPs). TWSG1 binds BMPs and their antagonist Chordin to control BMP signaling during embryonic development, kidney regeneration and cancer. We report crystal structures of TWSG1 alone and in complex with a BMP ligand, Growth Differentiation Factor 5. TWSG1 is composed of two distinct, disulfide-rich domains. The TWSG1 N-terminal domain occupies the BMP type 1 receptor binding site on BMPs, whereas the C-terminal domain binds to a Chordin family member. We show that TWSG1 inhibits BMP function in cellular signaling assays and mouse colon organoids. This inhibitory function is abolished in a TWSG1 mutant that cannot bind BMPs. The same mutation in the Drosophila TWSG1 ortholog Tsg fails to mediate BMP gradient formation required for dorsal-ventral axis patterning of the early embryo. Our studies reveal the evolutionarily conserved mechanism of BMP signaling inhibition by TWSG1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胚层祖细胞的协调运动在背侧达到高峰,其中Bmp信号梯度较低,腹侧最小,其中Bmp梯度较高。这种动态的细胞运动受到各种信号通路的相互作用的调节。非规范的Wnt信号级联作为会聚和延伸细胞运动的关键调节器,通过激活小的GTPases,如Rho,Rab,还有Rac.然而,腹侧细胞运动受限的根本原因仍然难以捉摸。探讨一个关键调节因子在腹侧限制原肠胚细胞运动中的作用,我们研究了Bmp4-direct靶基因,嘶嘶声,评估其在抑制非规范Wnt信号传导中的潜在作用。在我们目前的研究中,我们证明了sizzled的异位表达以剂量依赖性方式导致胃泌素缺陷,不改变细胞命运规范。sizzled的过表达导致激活素处理的动物帽和凯勒外植体的伸长降低。此外,我们的免疫沉淀测定法揭示了Sizzled与非经典Wnt配体蛋白(Wnt5和Wnt11)的物理相互作用。此外,过表达后,参与Wnt信号介导的小GTP酶(RhoA和Rac1)的激活减弱。总之,我们的发现表明,Bmp4信号传导通过诱导非洲爪狼早期原肠胚形成过程中的sizzle表达来负向调节胚胎腹侧的细胞运动。
    The coordinated movement of germ layer progenitor cells reaches its peak at the dorsal side, where the Bmp signaling gradient is low, and minimum at the ventral side, where the Bmp gradient is high. This dynamic cell movement is regulated by the interplay of various signaling pathways. The noncanonical Wnt signaling cascade serves as a pivotal regulator of convergence and extension cell movement, facilitated by the activation of small GTPases such as Rho, Rab, and Rac. However, the underlying cause of limited cell movement at the ventral side remains elusive. To explore the functional role of a key regulator in constraining gastrulation cell movement at the ventral side, we investigated the Bmp4-direct target gene, sizzled (szl), to assess its potential role in inhibiting noncanonical Wnt signaling. In our current study, we demonstrated that ectopic expression of szl led to gastrulation defects in a dose-dependent manner without altering cell fate specification. Overexpression of szl resulted in decreased elongation of Activin-treated animal cap and Keller explants. Furthermore, our immunoprecipitation assay unveiled the physical interaction of Szl with noncanonical Wnt ligand proteins (Wnt5 and Wnt11). Additionally, the activation of small GTPases involved in Wnt signaling mediation (RhoA and Rac1) was diminished upon szl overexpression. In summary, our findings suggest that Bmp4 signaling negatively modulates cell movement from the ventral side of the embryo by inducing szl expression during early Xenopus gastrulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:鸟类节点相当于两栖动物Spemann\的组织者,如它诱导第二轴的能力所示,细胞贡献,和基因表达,而鼠标的节点,显示有限的感应能力,被认为是空间分布信号的一部分。此外,小鼠节点的结构特性备受争议,而对其他哺乳动物的等效结构知之甚少。
    结果:我们使用形态学和在胃泌成之前和期间选择的组织者基因的表达分析了猪中的节点和新出现的组织者。该节点是根据“四个季度模型”定义的,基于比较考虑。猪的节点显示多层,包括柱状上皮的致密结构,背侧的瓶状细胞,和腹侧间充质细胞。gosecoid(gsc)的表达,chordin,和brachyury,连同形态学,揭示了三个不同域的连续出现:原肠胚形成前体域,推定节点,和成熟的节点。此外,gsc在上胚层上皮形成之前显示腹侧表达结构域。
    结论:我们的研究定义了猪中新出现的组织者等同物的形态和分子背景,并表明其功能的顺序发展。
    BACKGROUND: The avian node is the equivalent of the amphibian Spemann\'s organizer, as indicated by its ability to induce a secondary axis, cellular contribution, and gene expression, whereas the node of the mouse, which displays limited inductive capacities, was suggested to be a part of spatially distributed signaling. Furthermore, the structural identity of the mouse node is subject of controversy, while little is known about equivalent structures in other mammals.
    RESULTS: We analyzed the node and emerging organizer in the pig using morphology and the expression of selected organizer genes prior to and during gastrulation. The node was defined according to the \"four-quarter model\" based on comparative consideration. The node of the pig displays a multilayered, dense structure that includes columnar epithelium, bottle-like cells in the dorsal part, and mesenchymal cells ventrally. Expression of goosecoid (gsc), chordin, and brachyury, together with morphology, reveal the consecutive emergence of three distinct domains: the gastrulation precursor domain, the presumptive node, and the mature node. Additionally, gsc displays a ventral expression domain prior to epiblast epithelialization.
    CONCLUSIONS: Our study defines the morphological and molecular context of the emerging organizer equivalent in the pig and suggests a sequential development of its function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    外部双侧对称是脊椎动物的一个普遍特征,在早期胚胎发育过程中出现。首先,脊椎动物胚胎在过渡到双侧对称之前基本上是径向对称的,之后,各种双侧组织的形态发生(例如gsomites,耳囊泡,四肢芽),和结构(e。g腭,下巴)随之而来。虽然大量的工作已经探索了左右轴对称破坏导致内部器官不对称定位的机制,关于双侧组织如何在胚胎两侧以相同的形状和大小以及相同的位置同时出现,人们知之甚少。通过讨论脊椎动物模型系统中许多双侧组织和结构中对称性的出现,我们强调,理解对称建立在很大程度上是一个开放的领域,这将为未来几十年发展生物学中的基本问题提供深刻的见解。
    External bilateral symmetry is a prevalent feature in vertebrates, which emerges during early embryonic development. To begin with, vertebrate embryos are largely radially symmetric before transitioning to bilaterally symmetry, after which, morphogenesis of various bilateral tissues (e.g somites, otic vesicle, limb bud), and structures (e.g palate, jaw) ensue. While a significant amount of work has probed the mechanisms behind symmetry breaking in the left-right axis leading to asymmetric positioning of internal organs, little is known about how bilateral tissues emerge at the same time with the same shape and size and at the same position on the two sides of the embryo. By discussing emergence of symmetry in many bilateral tissues and structures across vertebrate model systems, we highlight that understanding symmetry establishment is largely an open field, which will provide deep insights into fundamental problems in developmental biology for decades to come.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号