Galactose Oxidase

半乳糖氧化酶
  • 文章类型: Journal Article
    由于某些天然酶的稳定性低,成本高,纳米酶已被开发为模拟酶的纳米材料。单原子纳米酶是一类具有金属中心的纳米酶,其模拟基于金属的天然酶的结构。在这里,合成的Cu-N-C单原子纳米酶(SAN)具有优异的过氧化物酶和增强的氧化酶样活性,以模拟天然半乳糖氧化酶的作用。Cu-SAN通过氧化D-半乳糖和伯醇而不是L-半乳糖或其他碳水化合物而表现出类似于天然半乳糖氧化酶的立体特异性活性。SAN可以在氧气的存在下催化半乳糖的氧化,生产过氧化氢作为副产品。产生的过氧化氢然后氧化3,3',SAN催化的5,5'-四甲基联苯胺,产生典型的蓝色产品。吸光度与半乳糖浓度之间的关系在1-60µm范围内呈线性关系,检出限低至0.23µm。该策略可用于某些乳制品和其他商业产品中半乳糖血症的诊断和半乳糖的检测。DFT计算阐明了POD样反应中Cu位点的高活性,并解释了Cu-SAN氧化酶样反应对D-半乳糖的选择性。
    Due to the low stability and high cost of some natural enzymes, nanozymes have been developed as enzyme-imitating nanomaterials. Single-atom nanozymes are a class of nanozymes with metal centers that mimic the structure of metal-based natural enzymes. Herein, Cu-N-C single-atom nanozyme (SAN) is synthesized with excellent peroxidase- and enhanced oxidase-like activities to mimic the action of natural galactose oxidase. Cu-SAN demonstrates stereospecific activity akin to that of natural galactose oxidase by oxidizing D-galactose and primary alcohol but not L-Galactose or other carbohydrates. The SAN can catalyze the oxidation of galactose in the presence of oxygen, producing hydrogen peroxide as a sub-product. The produced hydrogen peroxide then oxidizes 3,3\',5,5\'-tetramethylbenzidine catalyzed by the SAN, yielding the typical blue product. The relationship between absorbance and galactose concentration is linear in the 1-60 µm range with a detection limit as low as 0.23 µm. This strategy can be utilized in the diagnosis of galactosemia disorder and detection of galactose in some dairy and other commercial products. DFT calculations clarify the high activity of the Cu sites in the POD-like reaction and explain the selectivity of the Cu-SAN oxidase-like reaction toward D-galactose.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    来自辅助活性家族5(AA5)的细菌和真菌铜自由基氧化酶(CRO)与形态发生和发病机理有关。CRO的独特催化性能也使这些酶成为小分子和生物聚合物转化的有吸引力的生物催化剂。尽管最近有特色的AA5成员的数量有所增加,特别是来自亚科2(AA5_2),整个家庭的催化多样性仍未得到充分开发。在本研究中,系统发育分析指导从不同真菌中选择六个AA5_2成员在PfaffiiKomagataella(syn。巴斯德毕赤酵母)和体外生化表征。五个目标显示出主要的半乳糖6-氧化酶活性(EC1.1.3.9),一种是广泛特异性的芳基醇氧化酶(EC1.1.3.7),对平台化学5-羟甲基糠醛(EC1.1.3.47)具有最大活性。将先前表征的AA5_2成员与来自本研究的那些进行比较的序列比对表明在涉及特异性调节的活性位点位置处的各种氨基酸取代。重要酶的发现和表征是微生物生物学和生物催化剂在工业过程中应用的基础。一方面,氧化过程是真菌腐化和发病机制的核心。另一方面,小分子和(生物)聚合物的受控氧化使这些化合物具有价值,并引入通用官能团以进行进一步修饰。六种新的铜自由基氧化酶的生化表征进一步阐明了这些酶的催化多样性,这将为未来的生物学研究和生物技术应用提供信息。
    Bacterial and fungal copper radical oxidases (CROs) from Auxiliary Activity Family 5 (AA5) are implicated in morphogenesis and pathogenesis. The unique catalytic properties of CROs also make these enzymes attractive biocatalysts for the transformation of small molecules and biopolymers. Despite a recent increase in the number of characterized AA5 members, especially from subfamily 2 (AA5_2), the catalytic diversity of the family as a whole remains underexplored. In the present study, phylogenetic analysis guided the selection of six AA5_2 members from diverse fungi for recombinant expression in Komagataella pfaffii (syn. Pichia pastoris) and biochemical characterization in vitro. Five of the targets displayed predominant galactose 6-oxidase activity (EC 1.1.3.9), and one was a broad-specificity aryl alcohol oxidase (EC 1.1.3.7) with maximum activity on the platform chemical 5-hydroxymethyl furfural (EC 1.1.3.47). Sequence alignment comparing previously characterized AA5_2 members to those from this study indicated various amino acid substitutions at active site positions implicated in the modulation of specificity.IMPORTANCEEnzyme discovery and characterization underpin advances in microbial biology and the application of biocatalysts in industrial processes. On one hand, oxidative processes are central to fungal saprotrophy and pathogenesis. On the other hand, controlled oxidation of small molecules and (bio)polymers valorizes these compounds and introduces versatile functional groups for further modification. The biochemical characterization of six new copper radical oxidases further illuminates the catalytic diversity of these enzymes, which will inform future biological studies and biotechnological applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    羰基交联剂用于改性纺织品和形成树脂,并且每年以百万吨的数量生产。由于它们对环境和人类健康的毒性,然而,需要危害较小的生物基替代品。这项研究使用禾谷镰刀菌(FgrGalOx)的半乳糖氧化酶和双孢蘑菇(AbPDH1)的吡喃糖脱氢酶将羰基引入乳糖和半乳糖,以产生四个交联剂。差示扫描量热法用于比较交联剂反应性,最值得注意的是,与未修饰的半乳糖相比,FgrGalOx氧化的半乳糖的反应峰值温度(72°C)降低了34°C。衰减全反射傅里叶变换红外(ATR-FTIR)光谱,X射线光电子能谱(XPS),和质子核磁共振(1HNMR)光谱用于验证亚胺的形成以及胺和醛的消耗。交联剂与聚烯丙胺混合时显示形成凝胶,与FgrGalOx氧化乳糖形成凝胶比所有其他交联剂更有效,包括戊二醛.碳水化合物交联剂技术的进一步发展可能导致它们在各种应用中的采用,包括粘合剂,树脂,和纺织品。
    Carbonyl cross-linkers are used to modify textiles and form resins, and are produced annually in megatonne volumes. Due to their toxicity toward the environment and human health, however, less harmful biobased alternatives are needed. This study introduces carbonyl groups to lactose and galactose using galactose oxidase from Fusarium graminearum (FgrGalOx) and pyranose dehydrogenase from Agaricus bisporus (AbPDH1) to produce four cross-linkers. Differential scanning calorimetry was used to compare cross-linker reactivity, most notably resulting in a 34 °C decrease in reaction peak temperature (72 °C) for FgrGalOx-oxidized galactose compared to unmodified galactose. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and proton nuclear magnetic resonance (1H NMR) spectroscopy were used to verify imine formation and amine and aldehyde depletion. Cross-linkers were shown to form gels when mixed with polyallylamine, with FgrGalOx-oxidized lactose forming gels more effectively than all other cross-linkers, including glutaraldehyde. Further development of carbohydrate cross-linker technologies could lead to their adoption in various applications, including in adhesives, resins, and textiles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    半乳糖血症,严重的遗传代谢紊乱,缺乏半乳糖降解酶的结果,导致有害的半乳糖积累。在这项研究中,我们介绍了一种新型的基于毛细管的表面增强拉曼光谱(SERS)传感器,用于方便和灵敏的半乳糖检测。所开发的传感器通过将金纳米颗粒(AuNP)引入毛细管内银纳米壳(AgNSs)的表面来增强SERS信号,以AuNPs为卫星创建AgNSS。利用4-巯基苯基硼酸(4-MPBA)作为拉曼报告分子,检测方法依赖于在半乳糖氧化酶(GOx)的半乳糖氧化过程中产生的过氧化氢(H2O2)驱动的4-MPBA向4-巯基苯酚(4-MPhOH)的转化。观察到新的SERS信号,它是由半乳糖和GOx反应时产生的H2O2产生的。我们的策略产生了SERS信号的定量变化,特别是在998到1076cm-1(I998/I1076)的条带强度比中,随着半乳糖浓度的增加。我们基于毛细管的SERS生物传感器为早期半乳糖血症诊断提供了一个有前途的平台。
    Galactosemia, a severe genetic metabolic disorder, results from the absence of galactose-degrading enzymes, leading to harmful galactose accumulation. In this study, we introduce a novel capillary-based surface-enhanced Raman spectroscopy (SERS) sensor for convenient and sensitive galactose detection. The developed sensor enhances SERS signals by introducing gold nanoparticles (Au NPs) onto the surface of silver nanoshells (Ag NSs) within a capillary, creating Ag NSs with Au NPs as satellites. Utilizing 4-mercaptophenylboronic acid (4-MPBA) as a Raman reporter molecule, the detection method relies on the conversion of 4-MPBA to 4-mercaptophenol (4-MPhOH) driven by hydrogen peroxide (H2O2) generated during galactose oxidation by galactose oxidase (GOx). A new SERS signal was observed, which was generated by H2O2 produced when galactose and GOx reacted. Our strategy yielded a quantitative change in the SERS signal, specifically in the band intensity ratio of 998 to 1076 cm-1 (I998/I1076) as the galactose concentration increased. Our capillary-based SERS biosensor provides a promising platform for early galactosemia diagnosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    获得有关细胞相互作用的信息是阐明生理和病理过程的基础。邻近标记技术已被广泛用于报告原位细胞相互作用;然而,对添加标签分子的依赖通常将其应用限制在标签可以容易扩散的区域,而在中的应用,例如,实体组织,是易感的。这里,我们提出了一种“原位标签生成机制”,并开发了基于半乳糖氧化酶(GAO)的GalTag技术,用于记录三维生物固体区域内的细胞相互作用。安装在诱饵细胞上的GAO可以原位产生生物正交醛标签,作为猎物细胞上的相互作用报告基因。使用GalTag,我们监测了细胞相互作用的动力学,并评估了工程细胞的靶向能力。特别是,我们记录了,第一次,卡介苗(BCG)侵入活体小鼠膀胱组织的足迹,为阐明卡介苗的抗肿瘤机制提供了有价值的视角。
    Obtaining information about cellular interactions is fundamental to the elucidation of physiological and pathological processes. Proximity labeling technologies have been widely used to report cellular interactions in situ; however, the reliance on addition of tag molecules typically restricts their application to regions where tags can readily diffuse, while the application in, for example, solid tissues, is susceptible. Here, we propose an \"in-situ-tag-generation mechanism\" and develop the GalTag technology based on galactose oxidase (GAO) for recording cellular interactions within three-dimensional biological solid regions. GAO mounted on bait cells can in situ generate bio-orthogonal aldehyde tags as interaction reporters on prey cells. Using GalTag, we monitored the dynamics of cellular interactions and assessed the targeting ability of engineered cells. In particular, we recorded, for the first time, the footprints of Bacillus Calmette-Guérin (BCG) invasion into the bladder tissue of living mice, providing a valuable perspective to elucidate the anti-tumor mechanism of BCG.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在个体中进行半乳糖监测可以预防与遗传性代谢性疾病如半乳糖血症相关的恶劣健康状况。目前的半乳糖检测方法需要发展,更可靠,和更具体的传感器。基于半乳糖氧化酶活性的含酶安培传感器是一种有前途的方法,这可以通过将它们包含在氧化还原聚合物涂层中来增强。该策略同时允许将生物催化剂固定到电活性表面并承载电子穿梭单元。当在生理燃料中测量时,封端聚合物的额外沉积防止外部干扰如抗坏血酸或尿酸以及生物污染。这项工作研究了将聚(2-甲基丙烯酰氧基乙基磷酰胆碱-共-甲基丙烯酸缩水甘油酯(MPC)和聚乙烯咪唑-聚磺基苯乙烯(P(VI-SS))掺入生物传感器设计中以检测人血浆中的半乳糖时的保护作用。
    Galactose monitoring in individuals allows the prevention of harsh health conditions related to hereditary metabolic diseases like galactosemia. Current methods of galactose detection need development to obtain cheaper, more reliable, and more specific sensors. Enzyme-containing amperometric sensors based on galactose oxidase activity are a promising approach, which can be enhanced by means of their inclusion in a redox polymer coating. This strategy simultaneously allows the immobilization of the biocatalyst to the electroactive surface and hosts the electron shuttling units. An additional deposition of capping polymers prevents external interferences like ascorbic or uric acid as well as biofouling when measuring in physiological fuels. This work studies the protection effect of poly(2-methacryloyloxyethyl phosphorylcholine-co-glycidyl methacrylate (MPC) and polyvinylimidazole-polysulfostyrene (P(VI-SS)) when incorporated in the biosensor design for the detection of galactose in human plasma.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    高静水压在70.0-80.0°C下稳定半乳糖氧化酶(GaOx),以防热失活。失活运动的伪一级速率常数在80°C时降低了8倍,在72.5°C时降低了44倍。压力的最明显影响是在最低研究温度70.0°C下,失活的活化体积ΔV288为78.8cm3mol-1。对抗热灭活的最佳压力在200至300MPa之间。不像其他酶,随着温度的升高,失活的ΔV_降低,随着压力的增加,失活Eai的活化能增加。将GaOx的结果与早期对其他酶的压力诱导稳定的研究相结合,表明对于在最佳pH附近且其热解折叠的酶,失活的ΔV®与酶单体中大于〜100µ3的空穴总摩尔体积相关不伴有低聚物解离。
    High hydrostatic pressure stabilized galactose oxidase (GaOx) at 70.0-80.0°C against thermal inactivation. The pseudo-first-order rate constant of inactivation kinact decreased by a factor of 8 at 80°C and by a factor of 44 at 72.5°C. The most pronounced effect of pressure was at the lowest studied temperature of 70.0°C with an activation volume of inactivation ΔV‡ of 78.8 cm3 mol-1. The optimal pressure against thermal inactivation was between 200 and 300 MPa. Unlike other enzymes, as temperature increased the ΔV‡ of inactivation decreased, and as pressure increased the activation energy of inactivation Eai increased. Combining the results for GaOx with earlier research on the pressure-induced stabilization of other enzymes suggests that ΔV‡ of inactivation correlates with the total molar volume of cavities larger than ~100 Å3 in enzyme monomers for enzymes near the optimal pH and whose thermal unfolding is not accompanied by oligomer dissociation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铜配合物[Cu(L1H)ClO4](1)和[Cu(L2)NO3](2),与半乳糖氧化酶的金属位点有关,通过不同的光谱方法合成和表征。L1H2和L2H2[其中L1H2代表2,2'-((1E,1'E)(2,2'-(吡啶-2,6-二基)双(2-苯基肼-2-基-1-亚基)双(亚甲基))二酚和L2H2代表6,6'-((1E,1\'E)-(2,2\'-(吡啶-2,6-二基)双(2-苯基肼-2-基-1-亚基)双(亚甲基))双(2,4-二叔丁基苯酚),H代表可解离的质子]是五齿配体。这些配体提供吡啶基N,两个亚胺N,和两个非无辜的苯氧基和苯酚O供体,形成络合物1作为非自由基络合物,而络合物2是苯氧基自由基络合物。通过X射线晶体学鉴定了配合物1和2的分子结构。苯甲醇氧化进行了研究,并检查了9,10-二氢蒽向蒽的转化,以仔细检查H原子的提取反应。通过自激活的质粒DNA(pBR322)切割研究了复合物1和2的核酸酶活性。通过DFT计算研究了含配体的酚功能的非无辜性质。
    Copper complexes [Cu(L1H)ClO4] (1) and [Cu(L2)NO3] (2), which are relevant to the metal site of the galactose oxidase enzyme, were synthesized and characterized by different spectroscopic methods. L1H2 and L2H2 [where L1H2 stands for 2,2\'-((1E,1\'E)(2,2\'-(pyridine-2,6-diyl)bis(2-phenylhydrazin-2-yl-1-ylidene))bis(methanylylidene))diphenol and L2H2 stands for 6,6\'-((1E,1\'E)-(2,2\'-(pyridine-2,6-diyl)bis(2-phenylhydrazin-2-yl-1-ylidene))bis(methanylylidene))bis(2,4-di-tert-butylphenol), H stands for dissociable proton] are pentadentate ligands. These ligands provide pyridyl N, two imine N, and two non-innocent phenoxyl and phenolato O donors, forming complex 1 as a non-radical complex, while complex 2 is a phenoxyl radical complex. The molecular structures of complexes 1 and 2 were authenticated by X-ray crystallography. Benzyl alcohol oxidation was investigated, and the conversion of 9,10-dihydroanthracene to anthracene was examined to scrutinize the H-atom abstraction reaction. Nuclease activity with complexes 1 and 2 was investigated by self-activated plasmid DNA (pBR322) cleavage. Non-innocent properties of the ligand-containing phenolato function were investigated by DFT calculations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    半乳糖氧化酶(GalOx)由于其超过半乳糖自然氧化的选择性氧化能力而在生物催化中获得了显著的兴趣。然而,GalOx的实际应用受到活性和稳定生物催化剂的有限可用性的阻碍,以及固有的生化限制,如氧(O2)依赖性和活化的需要。在这项研究中,我们通过将GalOx固定到基于琼脂糖和Purolite的支持物中来解决这些挑战。此外,我们通过颗粒内氧传感确定并量化了固体催化剂的氧供应限制,显示了负载到固体载体上的蛋白质量与催化效率之间的权衡。此外,我们将含血红素的蛋白质与酶共固定化,以起到激活剂的作用。为了评估固定化GalOx的应用,我们进行了氧化半乳糖在一个仪器充气反应器。结果表明固定化酶在8h反应循环中的高效性能。值得注意的是,固定在硫酸葡聚糖活化的琼脂糖中的GalOx表现出改善的稳定性,克服了对可溶性活化剂供应的需求,并在半乳糖氧化中表现出卓越的性能。这些发现为GalOx在技术生物催化应用中的利用提供了有希望的前景。
    Galactose Oxidase (GalOx) has gained significant interest in biocatalysis due to its ability for selective oxidation beyond the natural oxidation of galactose, enabling the production of valuable derivatives. However, the practical application of GalOx has been hindered by the limited availability of active and stable biocatalysts, as well as the inherent biochemical limitations such as oxygen (O2 ) dependency and the need for activation. In this study, we addressed these challenges by immobilizing GalOx into agarose-based and Purolite supports to enhance its activity and stability. Additionally, we identified and quantified the oxygen supply limitation into solid catalysts by intraparticle oxygen sensing showing a trade-off between the amount of protein loaded onto the solid support and the catalytic effectiveness of the immobilized enzyme. Furthermore, we coimmobilized a heme-containing protein along with the enzyme to function as an activator. To evaluate the practical application of the immobilized GalOx, we conducted the oxidation of galactose in an instrumented aerated reactor. The results showcased the efficient performance of the immobilized enzyme in the 8 h reaction cycle. Notably, the GalOx immobilized into dextran sulfate-activated agarose exhibited improved stability, overcoming the need for a soluble activator supply, and demonstrated exceptional performance in galactose oxidation. These findings offer promising prospects for the utilization of GalOx in technical biocatalytic applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    三种酶半乳糖氧化酶(GO),过氧化氢酶(CAT),和Mn-超氧化物歧化酶(SOD)通过配位到磷酸盐缓冲液中的CuII同时固定。生物催化剂GO&CAT&SOD@CuII用于5-羟甲基糠醛(HMF)的转化。固定化GO催化HMF氧化为2,5-二甲酰呋喃(DFF),同时,共底物O2被还原成过氧化氢(H2O2)。副产物H2O2的一部分被共固定的CAT分解为O2和H2O,并且放出的O2可以再循环并用作共底物。在固定化SOD和配位CuII的协同催化下,部分副产物H2O2分解产生羟基•OH,产生的·OH可以重新激活固定化的半乳糖氧化酶。GO&CAT&SOD@CuII的高催化效率有两个方面:通过产生·OH来活化固定化半乳糖氧化酶,并通过回收产生的O2来富集共亚状态O2。对于10mMHMF的转化,GO&CAT&SOD@CuII(具有包封的GO0.2mg/mL)在2小时反应内实现97%的HMF转化率。相比之下,游离半乳糖氧化酶M3-5变体(ACSCatalysis2018,8,4025)(0.2mg/mL)在2小时反应内实现了25.3%的HMF转化率。所有反应均在纯水中进行,不在PBS
    The three enzymes galactose oxidase (GO), catalase (CAT), and Mn-superoxide dismutase (SOD) were simultaneously immobilized by coordinating to CuII in phosphate buffer saline. The biocatalyst GO&CAT&SOD@CuII was used for the conversion of 5-hydroxymethylfurfural (HMF). The immobilized GO catalyzes the oxidation of HMF to 2,5-diformylfuran (DFF), concomitantly the co-substrate O2 is reduced to hydrogen peroxide (H2O2). A portion of the byproduct H2O2 is broken down to O2 and H2O by the co-immobilized CAT, and the evolved O2 can be recycled and used as the co-substrate. A portion of the byproduct H2O2 is broken down to produce hydroxyl radicals •OH under the synergistic catalysis of the immobilized SOD and coordinated CuII, and the produced •OH can reactivate the immobilized galactose oxidase. Two aspects contribute to the high catalytic efficiency by GO&CAT&SOD@CuII: the reactivation of the immobilized galactose oxidase by producing •OH and the enrichment of the co-substate O2 by recycling the produced O2. For the conversion of 10 mM HMF, GO&CAT&SOD@CuII (with encapsulated GO 0.2 mg/mL) achieved 97% HMF conversion within 2 h reaction. In contrast, free galactose oxidase M3-5 variant (ACS Catalysis 2018, 8, 4025) (0.2 mg/mL) achieved 25.3% HMF conversion within 2 h reaction. All the reactions were carried out in pure water, not in PBS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号