GNN

GNN
  • 文章类型: Journal Article
    在不确定环境下,下一代自动驾驶汽车的合理运行需要自我定位和姿态配准。因此,精确定位和测绘是里程计中的关键任务,规划和其他下游加工。为了减少预处理中的信息损失,我们建议利用基于LiDAR的定位和映射(LOAM)和基于点云的深度学习,而不是基于卷积神经网络(CNN)的需要柱面投影的方法。然后使用正态分布变换(NDT)算法来从深度学习模型中改进先前的粗略姿态估计。结果表明,该方法在性能上与最近的基准研究相当。我们还探索了通过使用高级特征作为指纹来使用产品量化来改善NDT内部邻域搜索的可能性。
    Self-localization and pose registration are required for sound operation of next generation autonomous vehicles under uncertain environments. Thus, precise localization and mapping are crucial tasks in odometry, planning and other downstream processing. In order to reduce information loss in preprocessing, we propose leveraging LiDAR-based localization and mapping (LOAM) with point cloud-based deep learning instead of convolutional neural network (CNN) based methods that require cylindrical projection. The normal distribution transform (NDT) algorithm is then used to refine the former coarse pose estimation from the deep learning model. The results demonstrate that the proposed method is comparable in performance to recent benchmark studies. We also explore the possibility of using Product Quantization to improve NDT internal neighborhood searching by using high-level features as fingerprints.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    转移性乳腺癌(MBC)仍然是女性癌症相关死亡的主要原因。这项工作介绍了一种创新的非侵入性乳腺癌分类模型,旨在改善癌症转移的识别。虽然这项研究标志着预测MBC的初步探索,额外的调查对于验证MBC的发生至关重要.我们的方法结合了大型语言模型(LLM)的优势,特别是来自变压器(BERT)模型的双向编码器表示,图神经网络(GNN)的强大功能,可根据组织病理学报告预测MBC患者。本文介绍了一种用于转移性乳腺癌预测(BG-MBC)的BERT-GNN方法,该方法集成了从BERT模型得出的图形信息。在这个模型中,节点是根据病人的医疗记录构建的,虽然BERT嵌入被用来对组织病理学报告中的单词进行矢量化表示,从而通过采用三种不同的方法(即单变量选择,用于特征重要性的额外树分类器,和Shapley值,以确定影响最显著的特征)。确定在模型训练期间作为嵌入生成的676个中最关键的30个特征,我们的模型进一步增强了其预测能力。BG-MBC模型具有出色的准确性,在识别MBC患者时,检出率为0.98,曲线下面积(AUC)为0.98。这种显著的表现归功于模型对LLM从组织病理学报告中产生的注意力得分的利用,有效地捕获相关特征进行分类。
    Metastatic breast cancer (MBC) continues to be a leading cause of cancer-related deaths among women. This work introduces an innovative non-invasive breast cancer classification model designed to improve the identification of cancer metastases. While this study marks the initial exploration into predicting MBC, additional investigations are essential to validate the occurrence of MBC. Our approach combines the strengths of large language models (LLMs), specifically the bidirectional encoder representations from transformers (BERT) model, with the powerful capabilities of graph neural networks (GNNs) to predict MBC patients based on their histopathology reports. This paper introduces a BERT-GNN approach for metastatic breast cancer prediction (BG-MBC) that integrates graph information derived from the BERT model. In this model, nodes are constructed from patient medical records, while BERT embeddings are employed to vectorise representations of the words in histopathology reports, thereby capturing semantic information crucial for classification by employing three distinct approaches (namely univariate selection, extra trees classifier for feature importance, and Shapley values to identify the features that have the most significant impact). Identifying the most crucial 30 features out of 676 generated as embeddings during model training, our model further enhances its predictive capabilities. The BG-MBC model achieves outstanding accuracy, with a detection rate of 0.98 and an area under curve (AUC) of 0.98, in identifying MBC patients. This remarkable performance is credited to the model\'s utilisation of attention scores generated by the LLM from histopathology reports, effectively capturing pertinent features for classification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    癫痫的特征是由大脑中异常的电活动引起的反复发作。这些癫痫发作表现为各种症状,包括肌肉收缩和意识丧失。检测癫痫发作的挑战性任务涉及将脑电图(EEG)信号分类为发作(发作)和发作间(非发作)类别。这种分类是至关重要的,因为它区分了癫痫患者的癫痫发作状态和无癫痫发作期。我们的研究提出了一种通过利用图神经网络使用EEG信号检测癫痫发作和神经系统疾病的创新方法。该方法有效地解决了EEG数据处理的挑战。我们通过提取诸如基于频率,基于统计,和Daubechies小波变换的特点。该图形表示允许通过对所提取的特征的视觉检查来在癫痫发作和非癫痫发作信号之间进行潜在区分。为了提高癫痫发作检测的准确性,我们采用两种模型:一种将图卷积网络(GCN)与长短期记忆(LSTM)相结合,另一种将GCN与平衡随机森林(BRF)相结合。我们的实验结果表明,这两种模型都显著提高了癫痫发作检测的准确性,超越以前的方法。尽管通过减少渠道来简化我们的方法,我们的研究揭示了一致的表现,显示神经退行性疾病检测的显著进步。我们的模型在脑电图信号中准确识别癫痫发作,强调了图神经网络的潜力。流线型方法不仅以更少的渠道保持有效性,而且还提供了一种视觉上可区分的方法来辨别癫痫发作类别。这项研究为脑电图分析开辟了道路,强调图形表示在促进我们对神经退行性疾病的理解方面的影响。
    Epilepsy is characterized by recurring seizures that result from abnormal electrical activity in the brain. These seizures manifest as various symptoms including muscle contractions and loss of consciousness. The challenging task of detecting epileptic seizures involves classifying electroencephalography (EEG) signals into ictal (seizure) and interictal (non-seizure) classes. This classification is crucial because it distinguishes between the states of seizure and seizure-free periods in patients with epilepsy. Our study presents an innovative approach for detecting seizures and neurological diseases using EEG signals by leveraging graph neural networks. This method effectively addresses EEG data processing challenges. We construct a graph representation of EEG signals by extracting features such as frequency-based, statistical-based, and Daubechies wavelet transform features. This graph representation allows for potential differentiation between seizure and non-seizure signals through visual inspection of the extracted features. To enhance seizure detection accuracy, we employ two models: one combining a graph convolutional network (GCN) with long short-term memory (LSTM) and the other combining a GCN with balanced random forest (BRF). Our experimental results reveal that both models significantly improve seizure detection accuracy, surpassing previous methods. Despite simplifying our approach by reducing channels, our research reveals a consistent performance, showing a significant advancement in neurodegenerative disease detection. Our models accurately identify seizures in EEG signals, underscoring the potential of graph neural networks. The streamlined method not only maintains effectiveness with fewer channels but also offers a visually distinguishable approach for discerning seizure classes. This research opens avenues for EEG analysis, emphasizing the impact of graph representations in advancing our understanding of neurodegenerative diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:药物-药物相互作用(DDI)可导致不良事件和治疗功效受损,这强调需要准确预测和理解这些相互作用。
    方法:在本文中,我们提出了一种使用两个单独的消息传递神经网络(MPNN)模型进行DDI预测的新方法,每个人都专注于一对中的一种药物。通过捕获每种药物的独特特征及其相互作用,该方法旨在提高DDI预测的精度。单个MPNN模型的输出结合以整合来自两种药物及其分子特征的信息。在综合数据集上评估所提出的方法,我们证明了其优异的性能,准确度为0.90,曲线下面积(AUC)为0.99,F1评分为0.80.这些结果突出了所提出的方法在准确识别潜在药物相互作用方面的有效性。
    结果:使用两个独立的MPNN模型为捕获药物特征和相互作用提供了一个灵活的框架,有助于我们对DDI的理解。这项研究的结果对患者安全和个性化医疗具有重要意义,有可能通过预防不良事件来优化治疗结果。
    结论:有必要对更大的数据集和现实场景进行进一步的研究和验证,以探索这种方法的普遍性和实用性。
    BACKGROUND: Drug-drug interactions (DDIs) can lead to adverse events and compromised treatment efficacy that emphasize the need for accurate prediction and understanding of these interactions.
    METHODS: In this paper, we propose a novel approach for DDI prediction using two separate message-passing neural network (MPNN) models, each focused on one drug in a pair. By capturing the unique characteristics of each drug and their interactions, the proposed method aims to improve the accuracy of DDI prediction. The outputs of the individual MPNN models combine to integrate the information from both drugs and their molecular features. Evaluating the proposed method on a comprehensive dataset, we demonstrate its superior performance with an accuracy of 0.90, an area under the curve (AUC) of 0.99, and an F1-score of 0.80. These results highlight the effectiveness of the proposed approach in accurately identifying potential drugdrug interactions.
    RESULTS: The use of two separate MPNN models offers a flexible framework for capturing drug characteristics and interactions, contributing to our understanding of DDIs. The findings of this study have significant implications for patient safety and personalized medicine, with the potential to optimize treatment outcomes by preventing adverse events.
    CONCLUSIONS: Further research and validation on larger datasets and real-world scenarios are necessary to explore the generalizability and practicality of this approach.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    数字病理图像的当前方法通常采用小图像块来学习局部代表性特征,以克服计算量大和存储器限制的问题。然而,在整个幻灯片图像(WSI)中未充分考虑全局上下文特征。这里,我们设计了一个混合模型,利用图神经网络(GNN)模块和Transformer模块表示全局上下文特征,叫做TransGNN。GNN模块为WSI的前景区域构建了WSI-Graph,用于明确捕获结构特征,和Transformer模块通过自注意机制隐含地学习了全局上下文信息。肝细胞癌(HCC)预后生物标志物的预后标志物用于说明全局背景信息在癌症组织病理学分析中的重要性。我们的模型使用362个WSI从癌症基因组图谱(TCGA)诊断的355肝癌患者进行验证。它显示出令人印象深刻的性能,一致性指数(C指数)为0.7308(95%置信区间(CI):(0.6283-0.8333)),用于总体生存预测,并在所有模型中取得了最佳性能。此外,我们的模型在1年内实现了0.7904、0.8087和0.8004的曲线下面积,3年,和5年生存预测,分别。我们通过Kaplan-Meier曲线和单变量和多变量COX回归分析进一步验证了我们的模型在HCC风险分层中的优越性能及其临床价值。我们的研究表明,TransGNN有效地利用了WSI的背景信息,并有助于HCC的临床预后评估。
    Current methods of digital pathological images typically employ small image patches to learn local representative features to overcome the issues of computationally heavy and memory limitations. However, the global contextual features are not fully considered in whole-slide images (WSIs). Here, we designed a hybrid model that utilizes Graph Neural Network (GNN) module and Transformer module for the representation of global contextual features, called TransGNN. GNN module built a WSI-Graph for the foreground area of a WSI for explicitly capturing structural features, and the Transformer module through the self-attention mechanism implicitly learned the global context information. The prognostic markers of hepatocellular carcinoma (HCC) prognostic biomarkers were used to illustrate the importance of global contextual information in cancer histopathological analysis. Our model was validated using 362 WSIs from 355 HCC patients diagnosed from The Cancer Genome Atlas (TCGA). It showed impressive performance with a Concordance Index (C-Index) of 0.7308 (95% Confidence Interval (CI): (0.6283-0.8333)) for overall survival prediction and achieved the best performance among all models. Additionally, our model achieved an area under curve of 0.7904, 0.8087, and 0.8004 for 1-year, 3-year, and 5-year survival predictions, respectively. We further verified the superior performance of our model in HCC risk stratification and its clinical value through Kaplan-Meier curve and univariate and multivariate COX regression analysis. Our research demonstrated that TransGNN effectively utilized the context information of WSIs and contributed to the clinical prognostic evaluation of HCC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电梯门系统在确保电梯安全方面起着至关重要的作用。故障预测是预防事故的宝贵工具。通过分析操作过程中产生的声音信号,如部件磨损和撕裂,能准确判断系统的故障。本研究提出了GNN-LSTM-BDANN深度学习模型,以解决电梯运行环境和声音信号采集方法的变化。所提出的模型利用来自其他电梯的历史声音数据来预测目标电梯门系统的剩余使用寿命(RUL)。首先,收集其他电梯的打开和关闭声音,然后提取相关的声音信号特征,包括A加权声压级,响度,清晰度,和粗糙度。然后将这些特征转换为具有几何结构表示的图形数据。随后,图神经网络(GNN)和长短期记忆网络(LSTM)用于从数据中提取更深层次的特征。最后,基于改进的Bhattacharyya距离域对抗神经网络(BDANN)的迁移学习用于从其他电梯的历史声音数据中学习到的知识,以有效地预测目标电梯门系统的RUL。实验结果表明,该方法可以成功预测不同电梯门系统的潜在故障时间。
    The elevator door system plays a crucial role in ensuring elevator safety. Fault prediction is an invaluable tool for accident prevention. By analyzing the sound signals generated during operation, such as component wear and tear, the fault of the system can be accurately determined. This study proposes a GNN-LSTM-BDANN deep learning model to account for variations in elevator operating environments and sound signal acquisition methods. The proposed model utilizes the historical sound data from other elevators to predict the remaining useful life (RUL) of the target elevator door system. Firstly, the opening and closing sounds of other elevators is collected, followed by the extraction of relevant sound signal characteristics including A-weighted sound pressure level, loudness, sharpness, and roughness. These features are then transformed into graph data with geometric structure representation. Subsequently, the Graph Neural Networks (GNN) and long short-term memory networks (LSTM) are employed to extract deeper features from the data. Finally, transfer learning based on the improved Bhattacharyya Distance domain adversarial neural network (BDANN) is utilized to transfer knowledge learned from historical sound data of other elevators to predict RUL for the target elevator door system effectively. Experimental results demonstrate that the proposed method can successfully predict potential failure timeframes for different elevator door systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    随着新型可穿戴设备的不断发展,基于传感器的人类活动识别在研究和工业中受到极大的欢迎。来自惯性传感器的信号允许检测,分类,以及对人类活动的分析,如慢跑,骑自行车,或游泳。然而,人类活动识别通常仅限于短暂发生的基本活动,预定的时间段(滑动窗口)。复杂的宏观活动,例如多步运动锻炼或多步烹饪食谱,仍然只是在有限的程度上考虑,虽然一些作品研究了宏观活动的分类,对底层微活动如何相互作用的自动理解仍然是一个开放的挑战。本研究通过应用图链接预测来解决这一差距,图论和图神经网络(GNN)中的一个著名概念。为此,所提出的方法将微活动序列转换为微活动图,然后用GNN处理。对两个派生的现实世界数据集的评估表明,图链接预测可以准确识别微观活动之间的相互作用,并基于学习的图嵌入对复合宏观活动进行精确验证。此外,这项工作表明,GNN可以从序列识别任务中的位置编码中受益。
    With the continuous development of new wearable devices, sensor-based human activity recognition is enjoying enormous popularity in research and industry. The signals from inertial sensors allow for the detection, classification, and analysis of human activities such as jogging, cycling, or swimming. However, human activity recognition is often limited to basic activities that occur in short, predetermined periods of time (sliding windows). Complex macro-activities, such as multi-step sports exercises or multi-step cooking recipes, are still only considered to a limited extent, while some works have investigated the classification of macro-activities, the automated understanding of how the underlying micro-activities interact remains an open challenge. This study addresses this gap through the application of graph link prediction, a well-known concept in graph theory and graph neural networks (GNNs). To this end, the presented approach transforms micro-activity sequences into micro-activity graphs that are then processed with a GNN. The evaluation on two derived real-world data sets shows that graph link prediction enables the accurate identification of interactions between micro-activities and the precise validation of composite macro-activities based on learned graph embeddings. Furthermore, this work shows that GNNs can benefit from positional encodings in sequence recognition tasks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从非小细胞肺癌(NSCLC)的18F-氟代脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(18F-FDGPET/CT)图像获得的图像纹理特征揭示了肿瘤异质性。基因组数据和影像组学的结合可以改善肿瘤预后的预测。本研究旨在使用基于基因表达数据和图像纹理特征的蛋白质-蛋白质相互作用(PPI)网络获得的图神经网络(GNN)来预测NSCLC转移。从癌症成像档案获得93例NSCLC患者的18F-FDGPET/CT图像和RNA测序数据。从18F-FDGPET/CT图像中提取图像纹理特征,并计算每个图像特征的曲线下面积(AUC)。加权基因共表达网络分析(WGCNA)构建基因模块,然后进行功能富集分析和差异表达基因的鉴定。每个基因模块的PPI和属于转移相关过程的基因通过图形注意力网络进行转换。图像和基因组特征连接在一起。使用来自WGCNA的PPI模块和结合图像纹理特征的转移相关函数对GNN模型进行了定量评估。从18F-FDGPET/CT中提取55个图像纹理特征,和基于AUC选择影像组学特征(n=10)。通过WGCNA对86个基因模块进行聚类。使用DEG分析过滤在转移相关途径中富集的基因(n=19)。PPI网络的准确性,来自WGCNA模块和转移相关基因,从0.4795提高到0.5830(p<2.75×10-12)。在GNN模型中整合四个转移相关基因的PPI与18F-FDGPET/CT图像特征,将其准确性高于无图像特征模型的0.8545(95%CI=0.8401-0.8689,p值<0.02)。与使用源自WGCNA的PPI和18F-FDGPET/CT(p值<0.02)的模型相比,该模型显示出显着增强,强调转移相关基因在预测模型中的关键作用。淋巴结转移预测GNN模型对NSCLC的预测能力增强,通过将综合图像特征与基因组数据集成来实现,证明了临床实施的希望。
    The image texture features obtained from 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images of non-small cell lung cancer (NSCLC) have revealed tumor heterogeneity. A combination of genomic data and radiomics may improve the prediction of tumor prognosis. This study aimed to predict NSCLC metastasis using a graph neural network (GNN) obtained by combining a protein-protein interaction (PPI) network based on gene expression data and image texture features. 18F-FDG PET/CT images and RNA sequencing data of 93 patients with NSCLC were acquired from The Cancer Imaging Archive. Image texture features were extracted from 18F-FDG PET/CT images and area under the curve receiver operating characteristic curve (AUC) of each image feature was calculated. Weighted gene co-expression network analysis (WGCNA) was used to construct gene modules, followed by functional enrichment analysis and identification of differentially expressed genes. The PPI of each gene module and genes belonging to metastasis-related processes were converted via a graph attention network. Images and genomic features were concatenated. The GNN model using PPI modules from WGCNA and metastasis-related functions combined with image texture features was evaluated quantitatively. Fifty-five image texture features were extracted from 18F-FDG PET/CT, and radiomic features were selected based on AUC (n = 10). Eighty-six gene modules were clustered by WGCNA. Genes (n = 19) enriched in the metastasis-related pathways were filtered using DEG analysis. The accuracy of the PPI network, derived from WGCNA modules and metastasis-related genes, improved from 0.4795 to 0.5830 (p < 2.75 × 10-12). Integrating PPI of four metastasis-related genes with 18F-FDG PET/CT image features in a GNN model elevated its accuracy over a without image feature model to 0.8545 (95% CI = 0.8401-0.8689, p-value < 0.02). This model demonstrated significant enhancement compared to the model using PPI and 18F-FDG PET/CT derived from WGCNA (p-value < 0.02), underscoring the critical role of metastasis-related genes in prediction model. The enhanced predictive capability of the lymph node metastasis prediction GNN model for NSCLC, achieved through the integration of comprehensive image features with genomic data, demonstrates promise for clinical implementation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    下一代癌症和肿瘤学研究需要充分利用多模式结构,或图形,信息,图形数据类型从分子结构到空间分辨成像和数字病理学,生物网络,和知识图谱。图神经网络(GNN)有效地将图结构表示与深度学习的高预测性能相结合,特别是在大型多模态数据集上。在这篇评论文章中,我们调查了近期(2020年至今)GNN在癌症和肿瘤学研究中的应用情况,并划定了六个目前主要的研究领域。然后,我们确定了未来研究最有希望的方向。我们将GNN与图形模型和“非结构化”深度学习进行比较,并为癌症和肿瘤学研究人员或医师科学家制定指南,问他们是否应该在他们的研究管道中采用GNN方法的问题。
    Next-generation cancer and oncology research needs to take full advantage of the multimodal structured, or graph, information, with the graph data types ranging from molecular structures to spatially resolved imaging and digital pathology, biological networks, and knowledge graphs. Graph Neural Networks (GNNs) efficiently combine the graph structure representations with the high predictive performance of deep learning, especially on large multimodal datasets. In this review article, we survey the landscape of recent (2020-present) GNN applications in the context of cancer and oncology research, and delineate six currently predominant research areas. We then identify the most promising directions for future research. We compare GNNs with graphical models and \"non-structured\" deep learning, and devise guidelines for cancer and oncology researchers or physician-scientists, asking the question of whether they should adopt the GNN methodology in their research pipelines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    随着数字化口腔正畸在口腔疾病诊治中的广泛应用,越来越多的研究者关注从口内扫描数据中准确分割牙齿。分割结果的准确性将直接影响牙科医生的后续诊断。虽然目前关于牙齿分割的研究取得了可喜的成果,他们使用的3D口内扫描数据集几乎都是石膏模型的间接扫描,只包含有限的异常牙齿样本,因此很难将其应用于正畸治疗的临床场景。当前的问题是缺乏用于分析和验证牙齿分割有效性的统一和标准化的数据集。在这项工作中,我们专注于变形牙齿分割,并提供细粒度牙齿分割数据集(3D-IOSSeg)。该数据集包括来自200多名患者的3D口内扫描数据,每个样本都标有细粒度的网格单元。同时,3D-IOSSeg精心分类上颌和下颌的每颗牙齿。此外,我们提出了一种用于3D牙齿分割的快速图卷积网络,称为Fast-TGCN。在模型中,通过朴素邻接矩阵直接建立相邻网格单元之间的关系,从而更好地提取牙齿的局部几何特征。广泛的实验表明,Fast-TGCN可以快速,准确地从口腔中分割出具有复杂结构的牙齿,并且在各种评估指标中优于其他方法。此外,我们在这个数据集上展示了多种经典牙齿分割方法的结果,提供该领域的全面分析。所有代码和数据将在https://github.com/MIVRC/Fast-TGCN上提供。
    With the widespread application of digital orthodontics in the diagnosis and treatment of oral diseases, more and more researchers focus on the accurate segmentation of teeth from intraoral scan data. The accuracy of the segmentation results will directly affect the follow-up diagnosis of dentists. Although the current research on tooth segmentation has achieved promising results, the 3D intraoral scan datasets they use are almost all indirect scans of plaster models, and only contain limited samples of abnormal teeth, so it is difficult to apply them to clinical scenarios under orthodontic treatment. The current issue is the lack of a unified and standardized dataset for analyzing and validating the effectiveness of tooth segmentation. In this work, we focus on deformed teeth segmentation and provide a fine-grained tooth segmentation dataset (3D-IOSSeg). The dataset consists of 3D intraoral scan data from more than 200 patients, with each sample labeled with a fine-grained mesh unit. Meanwhile, 3D-IOSSeg meticulously classified every tooth in the upper and lower jaws. In addition, we propose a fast graph convolutional network for 3D tooth segmentation named Fast-TGCN. In the model, the relationship between adjacent mesh cells is directly established by the naive adjacency matrix to better extract the local geometric features of the tooth. Extensive experiments show that Fast-TGCN can quickly and accurately segment teeth from the mouth with complex structures and outperforms other methods in various evaluation metrics. Moreover, we present the results of multiple classical tooth segmentation methods on this dataset, providing a comprehensive analysis of the field. All code and data will be available at https://github.com/MIVRC/Fast-TGCN.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号