GEFs, guanine nucleotide exchange factors

GEF,鸟嘌呤核苷酸交换因子
  • 文章类型: Journal Article
    带卷曲螺旋的ADP-核糖基化因子(Arf)-GTP酶激活蛋白(GAP),据报道,锚蛋白重复序列和PH结构域1(ACAP1)可作为网格蛋白外套复合物的衔接子,在胞吞再循环和细胞迁移中起作用。ACAP1在肺腺癌(LUAD)中的潜在作用尚未完全确定。我们进行了全面的分析,包括基因表达,生存分析,遗传改变,功能富集,和免疫特性。ACAP1在肿瘤组织中显著下调,并与LUAD患者的临床病理特征有关。预后分析表明,低ACAP1表达与LUAD患者不满意的总生存期(OS)和疾病特异性生存期(DSS)相关。此外,ACAP1可以根据Cox比例风险模型和列线图模型确定为预后生物标志物。我们还证实ACAP1在两个LUAD细胞系中下调,与正常肺细胞相比。ACAP1的过表达导致细胞增殖的严重衰减,迁移,入侵,促进细胞凋亡。此外,功能富集分析证实ACAP1与T细胞活化和免疫应答高度相关.然后,我们进一步进行了免疫景观分析,包括单细胞RNA测序,免疫细胞浸润,和免疫检查点。ACAP1的表达与TME中免疫细胞的浸润水平和免疫检查点分子的表达呈正相关。本研究首先综合分析了分子表达,临床意义,以及LUAD中ACAP1的免疫景观特征,提示ACAP1可预测患者的预后,并可作为预测LUAD患者免疫治疗反应的潜在生物标志物.
    ADP-ribosylation factor (Arf)-GTPase-activating protein (GAP) with coiled-coil, ankyrin repeat and PH domains 1 (ACAP1) has been reported to serve as an adaptor for clathrin coat complex playing a role in endocytic recycling and cellular migration. The potential role of ACAP1 in lung adenocarcinoma (LUAD) has not been yet completely defined. We performed the comprehensive analyses, including gene expression, survival analysis, genetic alteration, function enrichment, and immune characteristics. ACAP1 was remarkably downregulated in tumor tissues, and linked with the clinicopathologic features in LUAD patients. Prognostic analysis demonstrated that low ACAP1 expression was correlated with unsatisfactory overall survival (OS) and disease specific survival (DSS) in LUAD patients. Moreover, ACAP1 could be determined as a prognostic biomarker according to Cox proportional hazard model and nomogram model. We also confirmed that ACAP1 was downregulated in two LUAD cell lines, comparing to normal lung cell. Overexpression of ACAP1 caused a profound attenuation in cell proliferation, migration, invasion, and promoted cell apoptosis. Additionally, functional enrichment analyses confirmed that ACAP1 was highly correlated with T cell activation and immune response. Then, we further conducted immune landscape analyses, including single cell RNA sequencing, immune cells infiltration, and immune checkpoints. ACAP1 expression was positively associated with the infiltrating level of immune cells in TME and the expression of immune checkpoint molecules. This study first comprehensively analyzed molecular expression, clinical implication, and immune landscape features of ACAP1 in LUAD, suggesting that ACAP1 was predictive of prognosis and could serve as a potential biomarker predicting immunotherapy response for LUAD patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Members of the RAS proto-oncogene superfamily are indispensable molecular switches that play critical roles in cell proliferation, differentiation, and cell survival. Recent studies have attempted to prevent the interaction of RAS/GTP with RAS guanine nucleotide exchange factors (GEFs), impair RAS-effector interactions, and suppress RAS localization to prevent oncogenic signalling. The present study aimed to investigate the effect of the natural triterpenoic acid inhibitor glycyrrhetinic acid, which is isolated from the roots of Glycyrrhiza plant species, on RAS stability. We found that glycyrrhetinic acid may bind to the P-loop of RAS and alter its stability. Based on our biochemical tests and structural analysis results, glycyrrhetinic acid induced a conformational change in RAS. Meanwhile, glycyrrhetinic acid abolishes the function of RAS by interfering with the effector protein RAF kinase activation and RAS/MAPK signalling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Cell chemotaxis plays a pivotal role in normal development, inflammatory response, injury repair and tissue regeneration in all organisms. It is also a critical contributor to cancer metastasis, altered angiogenesis and neurite growth in disease. The molecular mechanisms regulating chemotaxis are currently being identified and key components may be pertinent therapeutic targets. Although these components appear to be mostly common in various cells, there are important differences in chemotactic signaling networks and signal processing that result in the distinct chemotactic behavior of mesenchymal cells compared to much better studied amoeboid blood cells. These differences are not necessarily predetermined based on cell type, but are rather chosen and exploited by cells to modify their chemotactic behavior based on physical constraints and/or environmental conditions. This results in a specific type of chemotactic migration in mesenchymal cells that can be selectively targeted in disease. Here, we compare the chemotactic behavior, signaling and motility of mesenchymal and amoeboid cells. We suggest that the current model of chemotaxis is applicable for small amoeboid cells but needs to be reconsidered for large mesenchymal cells. We focus on new candidate regulatory molecules and feedback mechanisms that may account for mesenchymal cell type-specific chemotaxis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    果蝇胚胎中的上皮修复是通过2种动态细胞骨架机制实现的:收缩性肌动球蛋白电缆和基于肌动蛋白的细胞突起。Rho家族小型GTPases(Rho,Rac,和Cdc42)是控制这两种伤口修复机制的细胞骨架调节剂。Cdc42是细胞突起所必需的,当缺席时,伤口修复缓慢,从未完全闭合。Rac蛋白在伤口前缘细胞中的特定区域积累,并且Rac缺陷胚胎表现出较慢的修复动力学。Rho1及其效应物Rok的突变体通过破坏前缘肌动蛋白电缆来损害伤口闭合的能力。我们的研究强调了这些蛋白质在伤口修复中的重要性,并确定了该过程中Rho1信号的下游效应物。
    Epithelial repair in the Drosophila embryo is achieved through 2 dynamic cytoskeletal machineries: a contractile actomyosin cable and actin-based cellular protrusions. Rho family small GTPases (Rho, Rac, and Cdc42) are cytoskeletal regulators that control both of these wound repair mechanisms. Cdc42 is necessary for cellular protrusions and, when absent, wounds are slow to repair and never completely close. Rac proteins accumulate at specific regions in the wound leading edge cells and Rac-deficient embryos exhibit slower repair kinetics. Mutants for both Rho1 and its effector Rok impair the ability of wounds to close by disrupting the leading-edge actin cable. Our studies highlight the importance of these proteins in wound repair and identify a downstream effector of Rho1 signaling in this process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    伤口对单细胞的修复涉及封闭伤口和修复潜在细胞骨架皮质所必需的动态膜和细胞骨架重排。皮质重塑所必需的一组蛋白质是小GTP酶的Rho家族。最近我们展示了这个GTPases家族的创始成员,Rho,Rac,和Cdc42都是正常单细胞伤口修复所必需的,并且在果蝇细胞伤口模型中以不同的时间/空间模式在伤口周围积累。此外,这些蛋白质相互沟通,并与细胞骨架,以调节它们的分布,以响应创伤。出乎意料的是,我们发现了上下文特异性RhoGTP酶与下游靶标或"效应物"结合的证据,这不能仅通过局部GTP酶激活来解释.在这里,我们讨论这些观察结果与非洲爪的卵母细胞中单细胞伤口修复的类似研究有关,并强调这些细胞伤口模型如何作为强大的工具来理解细胞伤口修复和RhoGTP酶生物学。
    Repair of wounds to single cells involves dynamic membrane and cytoskeletal rearrangements necessary to seal the wound and repair the underlying cytoskeleton cortex. One group of proteins essential to the cortical remodeling is the Rho family of small GTPases. Recently we showed that the founding members of this GTPases family, Rho, Rac, and Cdc42, are all essential for normal single cell wound repair and accumulate at the wound periphery in distinct temporal/spatial patterns in the Drosophila cell wound model. In addition, these proteins communicate with one another and with the cytoskeleton to regulate their distribution in response to wounds. Unexpectedly, we found evidence for context specific Rho GTPase binding to downstream targets or \"effectors\" which cannot be explained solely by means of local GTPase activation. Here we discuss these observations in relation to similar studies in single cell wound repair in the Xenopus oocyte, and highlight how these cell wound models serve as powerful tools to understand both cell wound repair and Rho GTPase biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号