G3BP1

G3BP1
  • 文章类型: Journal Article
    背景:由SARS-CoV-2引起的COVID-19的全球爆发已导致数百万人死亡。这种意想不到的紧急情况促使全球病毒学家更深入地研究宿主-病毒界面的复杂动态性,旨在识别抗病毒靶标并阐明严重疾病的宿主和病毒决定因素。
    目的:本研究旨在分析组蛋白去乙酰化酶6(HDAC6)在调节SARS-CoV-2感染中的作用。
    结果:在SARS-CoV-2感染后,在不同的SARS-CoV-2允许细胞系中观察到HDAC6表达逐渐增加。SARS-CoV-2核衣壳蛋白(N蛋白)被鉴定为负责上调HDAC6表达的主要病毒因子。使用shRNA或特异性抑制剂tubacin下调HDAC6导致病毒复制减少,表明其脱乙酰酶活性的前病毒作用。进一步的研究揭示了HDAC6与应激颗粒蛋白G3BP1和N蛋白在感染过程中的相互作用。发现HDAC6介导的SARS-CoV-2N蛋白的去乙酰化对其与G3BP1的关联至关重要。
    结论:这项研究为SARS-CoV-2感染过程中细胞质应激颗粒破坏的分子机制提供了有价值的见解,并强调了HDAC6在此过程中的重要性。
    BACKGROUND: The global outbreak of COVID-19 caused by the SARS-CoV-2 has led to millions of deaths. This unanticipated emergency has prompted virologists across the globe to delve deeper into the intricate dynamicity of the host-virus interface with an aim to identify antiviral targets and elucidate host and viral determinants of severe disease.
    OBJECTIVE: The present study was undertaken to analyse the role of histone deacetylase 6 (HDAC6) in regulating SARS-CoV-2 infection.
    RESULTS: Gradual increase in HDAC6 expression was observed in different SARS-CoV-2-permissive cell lines following SARS-CoV-2 infection. The SARS-CoV-2 nucleocapsid protein (N protein) was identified as the primary viral factor responsible for upregulating HDAC6 expression. Downregulation of HDAC6 using shRNA or a specific inhibitor tubacin resulted in reduced viral replication suggesting proviral role of its deacetylase activity. Further investigations uncovered the interaction of HDAC6 with stress granule protein G3BP1 and N protein during infection. HDAC6-mediated deacetylation of SARS-CoV-2 N protein was found to be crucial for its association with G3BP1.
    CONCLUSIONS: This study provides valuable insights into the molecular mechanisms underlying the disruption of cytoplasmic stress granules during SARS-CoV-2 infection and highlights the significance of HDAC6 in the process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由G3BP1/2蛋白和非翻译mRNA介导的液-液相分离(LLPS)介导的应激颗粒(SG)组装。我们研究了G3BP直向同源物从单细胞酵母到哺乳动物的系统发育进化,并确定了保守和发散的特征。G3BP直系同源物的模块化域组织通常是保守的。然而,与脊椎动物直向同源物相比,无脊椎动物直向同源物显示人细胞中SG组装能力降低。我们证明了由NTF2L结构域促进的蛋白质相互作用网络是这种特异性的关键决定因素。G3BP1网络的发展与某些病毒的利用相吻合,从昆虫和脊椎动物中的病毒蛋白和G3BP直系同源物之间的相互作用可以明显看出。我们揭示了G3BP相互作用网络在人类SG形成中的重要性和分歧。利用这个网络,我们建立了7组分体外SG重建系统进行定量研究。这些发现突出了G3BP网络分歧在生物过程进化中的意义。
    Liquid-liquid phase separation (LLPS) mediated by G3BP1/2 proteins and non-translating mRNAs mediates stress granule (SG) assembly. We investigated the phylogenetic evolution of G3BP orthologs from unicellular yeast to mammals and identified both conserved and divergent features. The modular domain organization of G3BP orthologs is generally conserved. However, invertebrate orthologs displayed reduced capacity for SG assembly in human cells compared to vertebrate orthologs. We demonstrated that the protein-interaction network facilitated by the NTF2L domain is a crucial determinant of this specificity. The evolution of the G3BP1 network coincided with its exploitation by certain viruses, as evident from the interaction between viral proteins and G3BP orthologs in insects and vertebrates. We revealed the importance and divergence of the G3BP interaction network in human SG formation. Leveraging this network, we established a 7-component in vitro SG reconstitution system for quantitative studies. These findings highlight the significance of G3BP network divergence in the evolution of biological processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    含有卷曲螺旋结构域的124蛋白是一种多功能的RNA结合因子,以前报道它与位于不同亚细胞位置的各种生物分子复合物相互作用,比如核糖体,中心体,中体,和核仁.我们的目的是通过用荧光标签标记这种蛋白质来更好地表征亚细胞CCDC124易位,其次是激光扫描共聚焦显微镜的方法。由于CCDC124等小蛋白的传统GFP标记通常面临限制,如标记蛋白的潜在结构扰动,以及荧光标签对其内源性细胞功能的干扰,我们的目的是用尽可能小的分裂GFP相关蛋白标记系统(GFP11/GFP1-10)标记CCDC124,以更好地表征其亚细胞定位和易位动力学.通过重组DNA技术,我们生成了CCDC124构建体,该构建体标记有四个GFP11串联拷贝中的一个(GFP11×1::CCDC124,GFP11×4::CCDC124或CCDC124::GFP11×4)。然后,我们将U2OS细胞与这些分裂的GFP构建体(GFP11×1(或X4)::CCDC124/GFP1-10)共转染,并通过激光扫描共聚焦显微镜分析CCDC124蛋白的亚细胞定位。用四个串联拷贝的16个氨基酸的短GFP衍生肽标签(GFP11×4::CCDC124)标记CCDC124允许更好地表征我们的模型人骨骨肉瘤(U2OS)细胞中CCDC124蛋白的亚细胞定位。因此,通过这种新方法,我们首次通过活细胞蛋白成像成功地鉴定了G3BP1过表达诱导的应激颗粒中的GFP11×4::CCDC124分子。我们的发现建议CCDC124作为应激颗粒的新成分,它是无膜细胞器,参与响应细胞应激的翻译关闭。
    Coiled-coil domain-containing 124 protein is a multifunctional RNA-binding factor, and it was previously reported to interact with various biomolecular complexes localized at diverse subcellular locations, such as the ribosome, centrosome, midbody, and nucleoli. We aimed to better characterize the subcellular CCDC124 translocation by labelling this protein with a fluorescent tag, followed by laser scanning confocal microscopy methods. As traditional GFP-tagging of small proteins such as CCDC124 often faces limitations like potential structural perturbations of labeled proteins, and interference of the fluorescent-tag with their endogenous cellular functions, we aimed to label CCDC124 with the smallest possible split-GFP associated protein-tagging system (GFP11/GFP1-10) for better characterization of its subcellular localizations and its translocation dynamics. By recombinant DNA techniques we generated CCDC124-constructs labelled with either single of four tandem copies of GFP11 (GFP11 × 1::CCDC124, GFP11 × 4::CCDC124, or CCDC124::GFP11 × 4). We then cotransfected U2OS cells with these split-GFP constructs (GFP11 × 1(or X4)::CCDC124/GFP1-10) and analyzed subcellular localization of CCDC124 protein by laser scanning confocal microscopy. Tagging CCDC124 with four tandem copies of a 16-amino acid short GFP-derived peptide-tag (GFP11 × 4::CCDC124) allowed better characterization of the subcellular localization of CCDC124 protein in our model human bone osteosarcoma (U2OS) cells. Thus, by this novel methodology we successfully identified GFP11 × 4::CCDC124 molecules in G3BP1-overexpression induced stress-granules by live cell protein imaging for the first time. Our findings propose CCDC124 as a novel component of the stress granule which is a membraneless organelle involved in translational shut-down in response to cellular stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暴露于食物或口服药物中的有毒分子会在结肠细胞中引起毒性,从而导致各种人类疾病;然而,结肠细胞毒性的体外监测系统尚未建立。应激颗粒是在暴露于细胞应激的细胞中形成的非膜性病灶。当细胞感觉到有毒环境时,它们急剧和系统地促进应力颗粒的形成,RasGTP酶激活蛋白结合蛋白1(G3BP1)作为核心成分,保护其mRNA免受异常降解。这里,我们通过CRISPR-Cas9介导的同源重组将绿色荧光蛋白(GFP)编码序列敲入人结肠细胞系G3BP1基因的C末端区域,并证实了在细胞应激暴露下这些细胞中G3BP1-GFP蛋白的应激颗粒的形成。我们通过使用荧光显微镜进行实时监测,证明了G3BP1-GFP表达结肠细胞中应激颗粒的形成和解离。此外,我们通过观察暴露于二氢辣椒素后应激颗粒的形成,验证了建立的结肠细胞系的毒性监测系统,双酚A,和山梨醇。一起来看,我们在结肠细胞系中建立了应激颗粒报告系统,为实时监测各种化学物质对结肠的毒性提供了一种新的评估。
    Exposure to toxic molecules from food or oral medications induces toxicity in colon cells that cause various human diseases; however, in vitro monitoring systems for colon cell toxicity are not well established. Stress granules are nonmembranous foci that form in cells exposed to cellular stress. When cells sense toxic environments, they acutely and systemically promote stress granule formation, with Ras GTPase-activating protein-binding protein 1 (G3BP1) acting as a core component to protect their mRNA from abnormal degradation. Here, we knocked in green fluorescent protein (GFP)-coding sequences into the C-terminal region of the G3BP1 gene in a human colon cell line through CRISPR-Cas9-mediated homologous recombination and confirmed the formation of stress granules with the G3BP1-GFP protein in these cells under cellular stress exposure. We demonstrated the formation and dissociation of stress granules in G3BP1-GFP expressing colon cells through real-time monitoring using a fluorescence microscope. Furthermore, we validated the toxicity monitoring system in the established colon cell line by observing stress granule formation following exposure to dihydrocapsaicin, bisphenol A, and sorbitol. Taken together, we established a stress granule reporter system in a colon cell line, providing a novel assessment for the real-time monitoring of colon toxicity in response to various chemicals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    几种生物分子缩合物在哺乳动物细胞中组装以响应病毒感染。其中研究最多的是应激颗粒(SGs),已提出促进抗病毒先天免疫信号通路,包括RLR-MAVS,蛋白激酶R(PKR),和OAS-RNaseL途径。然而,最近的研究表明,SGs负调节或不影响抗病毒信号。相反,SG-成核蛋白,G3BP1可以通过将病毒RNA浓缩成病毒聚集的RNA缩合物来扰乱病毒RNA生物学,从而解释了为什么病毒经常拮抗G3BP1或劫持其RNA缩合功能。然而,最近发现的凝析油,称为双链RNA诱导的病灶,促进PKR和OAS-RNaseL抗病毒途径的激活。此外,在许多病毒感染期间已观察到称为RNaseL诱导体(RLB)的SG样缩合物。包括SARS-CoV-2和几种黄病毒。RLBs可能在促进细胞和病毒RNA的衰变中起作用,以及促进核糖体相关的信号通路。在这里,我们回顾了抗病毒生物分子缩合物领域的最新进展,我们提供了对抗病毒应答过程中规范SGs和G3BP1的作用的观点。
    Several biomolecular condensates assemble in mammalian cells in response to viral infection. The most studied of these are stress granules (SGs), which have been proposed to promote antiviral innate immune signaling pathways, including the RLR-MAVS, the protein kinase R (PKR), and the OAS-RNase L pathways. However, recent studies have demonstrated that SGs either negatively regulate or do not impact antiviral signaling. Instead, the SG-nucleating protein, G3BP1, may function to perturb viral RNA biology by condensing viral RNA into viral-aggregated RNA condensates, thus explaining why viruses often antagonize G3BP1 or hijack its RNA condensing function. However, a recently identified condensate, termed double-stranded RNA-induced foci, promotes the activation of the PKR and OAS-RNase L antiviral pathways. In addition, SG-like condensates known as an RNase L-induced bodies (RLBs) have been observed during many viral infections, including SARS-CoV-2 and several flaviviruses. RLBs may function in promoting decay of cellular and viral RNA, as well as promoting ribosome-associated signaling pathways. Herein, we review these recent advances in the field of antiviral biomolecular condensates, and we provide perspective on the role of canonical SGs and G3BP1 during the antiviral response.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    皮肤,体内表面积最大的器官,最容易受到外部环境的化学暴露。在这项研究中,我们旨在建立一种体外皮肤毒性监测系统,该系统利用各种细胞应激诱导的应激颗粒(SG)形成机制。在HaCaT细胞中,包含人类皮肤的角质形成细胞系,在RasGTP酶激活蛋白结合蛋白1(G3BP1)的C端基因组基因座处敲入绿色荧光蛋白(GFP),SGs的代表性组件。G3BP1-GFP敲入HaCaT细胞和野生型(WT)HaCaT细胞在暴露于亚砷酸盐和家用化学物质后形成含有G3BP1-GFP的SGs,如双酚A(BPA)和苯扎氯铵(BAC),实时。此外,G3BP1-GFP敲入HaCaT细胞暴露于BPA和BAC促进真核起始因子2α和蛋白激酶R样内质网激酶的磷酸化,它们是参与SG形成的细胞信号因子,类似于WTHaCaT细胞。总之,这种新型的G3BP1-GFP敲入人类皮肤细胞系统可以实时监测SG的形成,并用于评估皮肤毒性对各种物质。
    The skin, the organ with the largest surface area in the body, is the most susceptible to chemical exposure from the external environment. In this study, we aimed to establish an in vitro skin toxicity monitoring system that utilizes the mechanism of stress granule (SG) formation induced by various cellular stresses. In HaCaT cells, a keratinocyte cell line that comprises the human skin, a green fluorescent protein (GFP) was knocked in at the C-terminal genomic locus of Ras GTPase-activating protein-binding protein 1 (G3BP1), a representative component of SGs. The G3BP1-GFP knock-in HaCaT cells and wild-type (WT) HaCaT cells formed SGs containing G3BP1-GFP upon exposure to arsenite and household chemicals, such as bisphenol A (BPA) and benzalkonium chloride (BAC), in real-time. In addition, the exposure of G3BP1-GFP knock-in HaCaT cells to BPA and BAC promoted the phosphorylation of eukaryotic initiation factor 2 alpha and protein kinase R-like endoplasmic reticulum kinase, which are cell signaling factors involved in SG formation, similar to WT HaCaT cells. In conclusion, this novel G3BP1-GFP knock-in human skin cell system can monitor SG formation in real-time and be utilized to assess skin toxicity to various substances.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在各种环境压力下,真核细胞通常招募翻译停滞的mRNA和RNA结合蛋白以形成称为应激颗粒(SGs)的细胞质缩合物,最大限度地减少应激诱导的损伤,促进应激适应和细胞存活。SGs被癌细胞劫持以促进细胞存活,并因此参与抗癌药物抗性的发展。然而,针对SGs的化学化合物的设计和应用以提高抗癌药物功效的研究很少。这里,我们开发了来自SG核心蛋白Caprin1和USP10的两种类型的SG抑制肽(SIP),并与细胞穿透肽融合以产生TAT-SIP-C1/2和SIP-U1-Antp,分别。我们从基于细胞的筛选中获得了11种诱导SG的抗癌化合物,并探索了SIP在克服对诱导SG的抗癌药物索拉非尼的耐药性中的潜在应用。我们发现SIPs通过SGs的破坏增加了HeLa细胞对索拉非尼的敏感性。因此,有能力诱导SGs的抗癌药物可以与SIPs结合以使癌细胞敏感,这可能提供一种新的治疗策略来减轻抗癌药物的耐药性。
    Upon a variety of environmental stresses, eukaryotic cells usually recruit translational stalled mRNAs and RNA-binding proteins to form cytoplasmic condensates known as stress granules (SGs), which minimize stress-induced damage and promote stress adaptation and cell survival. SGs are hijacked by cancer cells to promote cell survival and are consequently involved in the development of anticancer drug resistance. However, the design and application of chemical compounds targeting SGs to improve anticancer drug efficacy have rarely been studied. Here, we developed two types of SG inhibitory peptides (SIPs) derived from SG core proteins Caprin1 and USP10 and fused with cell-penetrating peptides to generate TAT-SIP-C1/2 and SIP-U1-Antp, respectively. We obtained 11 SG-inducing anticancer compounds from cell-based screens and explored the potential application of SIPs in overcoming resistance to the SG-inducing anticancer drug sorafenib. We found that SIPs increased the sensitivity of HeLa cells to sorafenib via the disruption of SGs. Therefore, anticancer drugs which are competent to induce SGs could be combined with SIPs to sensitize cancer cells, which might provide a novel therapeutic strategy to alleviate anticancer drug resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尚不清楚BPIV3感染是否导致应激颗粒形成,以及G3BP1是否在此过程和病毒复制中起作用。本研究旨在阐明BPIV3与应激颗粒之间的关联,探讨G3BP1对BPIV3复制的影响,并对BPIV3逃避宿主抗病毒免疫以支持其自身生存的机制提供了重要见解。
    这里,我们用免疫荧光染色观察BPIV3感染对应激颗粒组装的影响。同时,测定eIF2α和G3BP1的表达变化。检测细胞内G3BP1水平的过表达或siRNA沉默对BPIV3复制的调节控制。
    我们确定BPIV3感染引起eIF2α蛋白的磷酸化。然而,它没有诱导应力颗粒的组装;相反,它抑制了胁迫颗粒的形成并下调了G3BP1的表达。G3BP1过表达促进细胞内应激颗粒的形成并阻碍病毒复制,而G3BP1敲低增强了BPIV3的表达。
    这项研究表明,G3BP1在BPIV3抑制应激颗粒形成和病毒复制中起着至关重要的作用。
    UNASSIGNED: It remains unclear whether BPIV3 infection leads to stress granules formation and whether G3BP1 plays a role in this process and in viral replication. This study aims to clarify the association between BPIV3 and stress granules, explore the effect of G3BP1 on BPIV3 replication, and provide significant insights into the mechanisms by which BPIV3 evades the host\'s antiviral immunity to support its own survival.
    UNASSIGNED: Here, we use Immunofluorescence staining to observe the effect of BPIV3 infection on the assembly of stress granules. Meanwhile, the expression changes of eIF2α and G3BP1 were determined. Overexpression or siRNA silencing of intracellular G3BP1 levels was examined for its regulatory control of BPIV3 replication.
    UNASSIGNED: We identify that the BPIV3 infection elicited phosphorylation of the eIF2α protein. However, it did not induce the assembly of stress granules; rather, it inhibited the formation of stress granules and downregulated the expression of G3BP1. G3BP1 overexpression facilitated the formation of stress granules within cells and hindered viral replication, while G3BP1 knockdown enhanced BPIV3 expression.
    UNASSIGNED: This study suggest that G3BP1 plays a crucial role in BPIV3 suppressing stress granule formation and viral replication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    应力颗粒(SGs),主要成分是GTP酶激活蛋白结合蛋白1(G3BP1),它们在病毒感染期间组装并具有隔离宿主和病毒mRNA和蛋白质的功能,是抗病毒反应的一部分。在这项研究中,我们发现,猪三角洲冠状病毒(PDCoV)感染通过PERK(蛋白激酶R样内质网激酶)依赖性机制诱导细胞稳定形成稳健的SGs.SGs标记蛋白G3BP1的过表达在体外显著降低了PDCoV的复制,而内源性G3BP1的抑制增强了PDCoV的复制。此外,PDCoV感染的LLC-PK1细胞提高了G3BP1的磷酸化水平。通过过表达G3BP1磷酸化蛋白或G3BP1去磷酸化蛋白,我们发现G3BP1的磷酸化参与PDCoV诱导的炎症反应的调节.一起来看,我们的研究提出了宿主对入侵病原体的先天反应的一个重要方面,并揭示了抗病毒靶标的有吸引力的宿主靶标。
    Stress granules (SGs), the main component is GTPase-activating protein-binding protein 1 (G3BP1), which are assembled during viral infection and function to sequester host and viral mRNAs and proteins, are part of the antiviral responses. In this study, we found that porcine deltacoronavirus (PDCoV) infection induced stable formation of robust SGs in cells through a PERK (protein kinase R-like endoplasmic reticulum kinase)-dependent mechanism. Overexpression of SGs marker proteins G3BP1 significantly reduced PDCoV replication in vitro, while inhibition of endogenous G3BP1 enhanced PDCoV replication. Moreover, PDCoV infected LLC-PK1 cells raise the phosphorylation level of G3BP1. By overexpression of the G3BP1 phosphorylated protein or the G3BP1 dephosphorylated protein, we found that phosphorylation of G3BP1 is involved in the regulation of PDCoV-induced inflammatory response. Taken together, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets for antiviral target.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    叉头盒转录因子1(FOXM1)的异常表达在多种人类恶性肿瘤中起关键作用,并预测预后不良。然而,关于FOXM1和长链非编码RNA(lncRNA)在肿瘤发生中的串扰知之甚少。本研究鉴定了胃癌(GC)中先前未表征的lncRNAXLOC_008672,受FOXM1调控,拥有多个拷贝的串联重复序列。LncRNA微阵列用于筛选FOXM1敲低GC细胞中差异表达的lncRNA,然后筛选出最高倍数下调的lncRNAXLOC_008672。序列分析显示,新的lncRNA包含62个拷贝的37-bp串联重复序列。它被FOXM1转录激活,并通过体外和体内功能测定在GC细胞中充当FOXM1的下游效应物。在GC组织中发现XLOC_008672的表达升高,表明预后较差。机械上,XLOC_008672可以结合小核核糖核蛋白多肽A(SNRPA),从而增强Ras-GTP酶激活蛋白SH3结构域结合蛋白1(G3BP1)的mRNA稳定性,因此,促进GC细胞增殖和迁移。我们的研究发现了一种新的未表征的lncRNAXLOC_008672参与GC癌的发生和发展。靶向FOXM1/XLOC_008672/SNRPA/G3BP1信号轴可能是一种有前途的GC治疗策略。
    Aberrant expression of forkhead box transcription factor 1 (FOXM1) plays critical roles in a variety of human malignancies and predicts poor prognosis. However, little is known about the crosstalk between FOXM1 and long noncoding RNAs (lncRNAs) in tumorigenesis. The present study identifies a previously uncharacterized lncRNA XLOC_008672 in gastric cancer (GC), which is regulated by FOXM1 and possesses multiple copies of tandem repetitive sequences. LncRNA microarrays are used to screen differentially expressed lncRNAs in FOXM1 knockdown GC cells, and then the highest fold downregulation lncRNA XLOC_008672 is screened out. Sequence analysis reveals that the new lncRNA contains 62 copies of 37-bp tandem repeats. It is transcriptionally activated by FOXM1 and functions as a downstream effector of FOXM1 in GC cells through in vitro and in vivo functional assays. Elevated expression of XLOC_008672 is found in GC tissues and indicates worse prognosis. Mechanistically, XLOC_008672 can bind to small nuclear ribonucleoprotein polypeptide A (SNRPA), thereby enhancing mRNA stability of Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) and, consequently, facilitating GC cell proliferation and migration. Our study discovers a new uncharacterized lncRNA XLOC_008672 involved in GC carcinogenesis and progression. Targeting FOXM1/XLOC_008672/SNRPA/G3BP1 signaling axis might be a promising therapeutic strategy for GC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号