Gα subunit

  • 文章类型: Journal Article
    有了锻炼,肌肉和骨骼产生对大脑有益的因子,脂肪,和其他器官。小鼠的运动增加成纤维细胞生长因子23(FGF23),尿磷酸盐,和肌肉代谢产物L-β-氨基异丁酸(L-BAIBA),提示L-BAIBA可能在磷酸盐代谢中发挥作用。这里,我们显示,L-BAIBA在血清中随着运动而增加,并升高骨细胞中的Fgf23。D对映体,被描述为随着人类的锻炼而升高,也可以诱导Fgf23,但通过延迟,通过硬化素间接过程。两种对映体都通过相同的受体发出信号,Mas相关G蛋白偶联受体D型,但激活不同的信号通路;L-BAIBA通过Gαs/cAMP/PKA/CBP/β-catenin和Gαq/PKC/CREB增加Fgf23,而D-BAIBA通过Gαi/NF-κB通过硬化蛋白间接增加Fgf23。在体内,两种对映体都增加了骨骼中的Fgf23,同时尿磷酸盐排泄增加。因此,运动诱导的BAIBA和FGF23增加共同作用以维持磷酸盐稳态。
    With exercise, muscle and bone produce factors with beneficial effects on brain, fat, and other organs. Exercise in mice increased fibroblast growth factor 23 (FGF23), urine phosphate, and the muscle metabolite L-β-aminoisobutyric acid (L-BAIBA), suggesting that L-BAIBA may play a role in phosphate metabolism. Here, we show that L-BAIBA increases in serum with exercise and elevates Fgf23 in osteocytes. The D enantiomer, described to be elevated with exercise in humans, can also induce Fgf23 but through a delayed, indirect process via sclerostin. The two enantiomers both signal through the same receptor, Mas-related G-protein-coupled receptor type D, but activate distinct signaling pathways; L-BAIBA increases Fgf23 through Gαs/cAMP/PKA/CBP/β-catenin and Gαq/PKC/CREB, whereas D-BAIBA increases Fgf23 indirectly through sclerostin via Gαi/NF-κB. In vivo, both enantiomers increased Fgf23 in bone in parallel with elevated urinary phosphate excretion. Thus, exercise-induced increases in BAIBA and FGF23 work together to maintain phosphate homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肝细胞通过调节细胞活动,如脂质,蛋白质代谢,碳水化合物,并与其他细胞相互作用以进行增殖和维持。在肝细胞中,从各种激动剂中摄取钙的浓度相当广泛,如活性Gα${G_\α}$亚基,活性磷脂酶C,胞质溶胶中的游离钙,和内质网。钙信号的过度产生和降解会导致体内平衡,肝脏炎症,和肝脏疾病。钙振荡的时空行为揭示了这些细胞实体在理解生产和降解过程中的生理作用。迄今为止,尚未对这些细胞实体的化合物钙调节(包括细胞记忆)进行计算尝试。因此,作者提出了一个分数阶隔室模型,该模型系统地模拟了细胞实体中钙摄入的交换。活动Gα${G_\α}$亚基变化率的非线性方程,活性磷脂酶C,胞质溶胶中的游离钙,和内质网耦合形成非线性分数阶初值问题。存在和独特性,进行了模型的稳定性分析,验证了理论结果并探索了钙振荡在每个隔室中的动力学行为。
    The hepatocyte cells regulate the wide range of liver function by moderating cellular activities such as lipid, protein metabolism, carbohydrate, and interact with other cells for proliferation and maintenance. In hepatocyte cells, the concentration of calcium uptake is quite extensive from various agonists such as active G α ${G_\\alpha}$ subunit, active phospholipase C, free calcium in the cytosol, and endoplasmic reticulum. The overproduction and degradation of calcium signals can cause homeostasis, liver inflammation, and liver diseases. The spatiotemporal behavior of calcium oscillation reveals the physiological role of these cellular entities in understanding the process of production and degradation. No computational attempt has been registered to date on the compound calcium regulation of these cellular entities including the memory of cells. Hence, the authors proposed a fractional order compartmental model that systematically simulates the exchange of calcium intake in cellular entities. The nonlinear equations of the rate of changes in the active G α ${G_\\alpha}$ subunit, active phospholipase C, free calcium in the cytosol, and endoplasmic reticulum are coupled to form a nonlinear fractional order initial value problem. The existence and uniqueness, stability analysis of the model is performed that validate the theoretical results and explore the dynamic behaviour of calcium oscillation in each compartment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    G蛋白偶联受体(GPCRs)是一类主要的膜受体,可调节多种生理功能。这些受体传递细胞外信号,包括分泌的生物活性肽,细胞内信号通路。线虫秀丽隐杆线虫具有FMRFamide样肽,它们是最多样化的神经肽家族之一,其中一些通过GPCRs调节幼虫发育。在这项研究中,我们鉴定了GPCR神经肽受体(NPR)-15,它调节秀丽隐杆线虫幼虫的发育。我们的分子遗传学分析表明:1)NPR-15主要在ASI神经元中起作用,主要调节幼虫发育,2)NPR-15与GPA-4相互作用,GPA-4是秀丽隐杆线虫Gα亚基,和3)NPR-15与GPA-4一起通过调节转化生长因子-β(TGF-β)样蛋白DAF-7的产生和分泌来调节幼虫发育。本研究是证明GPCR对直接调节TGF-β样蛋白的重要性的第一份报告。
    G protein-coupled receptors (GPCRs) are a major class of membrane receptors that modulate a wide range of physiological functions. These receptors transmit extracellular signals, including secreted bioactive peptides, to intracellular signaling pathways. The nematode Caenorhabditis elegans has FMRFamide-like peptides, which are one of the most diverse neuropeptide families, some of which modulate larval development through GPCRs. In this study, we identified the GPCR neuropeptide receptor (NPR)-15, which modulates C. elegans larval development. Our molecular genetic analyses indicated the following: 1) NPR-15 mainly functions in ASI neurons, which predominantly regulate larval development, 2) NPR-15 interacts with GPA-4, a C. elegans Gα subunit, and 3) NPR-15, along with GPA-4, modulates larval development by regulating the production and secretion of the transforming growth factor-β (TGF-β)-like protein DAF-7. The present study is the first report to demonstrate the importance of a GPCR to the direct regulation of a TGF-β-like protein.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    UNASSIGNED: Two BjuGα proteins exhibit conserved GTP-binding and GTP-hydrolysis activities, and function in maintaining overall plant architecture and controlling multiple yield-related traits in the oilseed Brassica juncea. Heterotrimeric G-protein (Gα, Gβ and Gγ) are key signal transducers, well characterized in model plants Arabidopsis and rice. However, our knowledge about the roles played by G-proteins in regulating various growth and developmental traits in polyploid crops, having a complex G-protein signalling network, is quite sparse. In the present study, two Gα encoding genes (BjuA.Gα1 and BjuB.Gα1) were isolated from the allotetraploid Brassica juncea, a globally cultivated oilseed crop of the Brassicaceae family. BjuGα1 genes share a close evolutionary relationship, and the encoded proteins exhibit highly conserved G-protein activities while showing expression differentiation, wherein BjuA.Gα1 was the highly abundant transcript during plant growth and developmental stages. RNAi based suppression of BjuGα1 displayed compromised effects on most of the tested vegetative and reproductive parameters, particularly plant height (32-58%), flower and siliques dimensions, and seed weight (11-13%). Further, over-expression of a constitutively active Gα, lacking the GTPase activity, produced plants with increased height, organ size and seed weight (7-25%), without altering seed quality traits like fatty acid composition, glucosinolates, oil and protein contents. Our study demonstrates that BjuGα1 proteins control overall plant architecture and multiple yield-related traits in the oilseed B. juncea, suggesting that BjuGα1 could be a promising target for crop improvement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    UNASSIGNED: CsGPA1 interacts with CsTIP1.1 (a member of CsAQPs) and suppression of CsGPA1 results the reverse expression of CsAQPs in leaves and roots, resulting in declining water content of cucumber seedlings under salt stress. Salt stress seriously affects cucumber growth and development. Whether the G-protein alpha subunit functions in cucumber during salt stress and its regulation mechanism remains unknown. We interrogated CsGPA1-RNAi lines to identify the role of CsGPA1 during salt stress. Phenotypically, compared with wild type, leaves were severely withered, and root cells showed signs of senescence under salt stress for RNAi lines. Compared with WT, SOD and CAT activity, soluble protein and proline contents all decreased in RNAi lines, while malondialdehyde and relative electrical conductivity increased. Through screening the yeast two-hybrid library and combined with yeast two-hybrid and GST pull-down, the interaction of CsGPA1 with CsTIP1.1 was found the first time in a plant. Then, the expression of aquaporin (AQP) family genes was detected. The expression of CsAQP genes in leaves and roots was primarily up-regulated in WT under salt stress. However, interference by CsGPA1 resulted in enhanced expression of CsAQPs except for CsTIP3.2 in leaves, but reduced expression of some CsAQPs in roots under salt stress. Furthermore, principal component analysis of CsAQP expression profiles and linear regression analysis between CsGPA1 and CsAQPs revealed that CsGPA1 reversely regulated the expression of CsAQPs in leaves and roots under salt stress. Moreover, the water content in leaves and roots of RNAi seedlings significantly decreased compared with WT under salt stress. Overall, CsGPA1 interacts with CsTIP1.1 and suppression of CsGPA1 results in opposite patterns of expression of CsAQPs in leaves and roots, resulting in declining water content of cucumber under salt stress.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Melatonin has been detected in plants in 1995; however, the function and signaling pathway of this putative phytohormone are largely undetermined due to a lack of knowledge about its receptor. Here, we discovered the first phytomelatonin receptor (CAND2/PMTR1) in Arabidopsis thaliana and found that melatonin governs the receptor-dependent stomatal closure. The application of melatonin induced stomatal closure through the heterotrimeric G protein α subunit-regulated H2 O2 and Ca2+ signals. The Arabidopsis mutant lines lacking AtCand2 that encodes a candidate G protein-coupled receptor were insensitive to melatonin-induced stomatal closure. Accordingly, the melatonin-induced H2 O2 production and Ca2+ influx were completely abolished in cand2. CAND2 is a membrane protein that interacts with GPA1 and the expression of AtCand2 was tightly regulated by melatonin in various organs and guard cells. CAND2 showed saturable and specific 125 I-melatonin binding, with apparent Kd (dissociation constant) of 0.73 ± 0.10 nmol/L (r2  = .99), demonstrating this protein is a phytomelatonin receptor (PMTR1). Our results suggest that the phytomelatonin regulation of stomatal closure is dependent on its receptor CAND2/PMTR1-mediated H2 O2 and Ca2+ signaling transduction cascade.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The Gα subunits of heterotrimeric G proteins play critical roles in the activation of diverse signal transduction cascades. However, the role of these genes in chemosensation remains to be fully elucidated. To initiate a comprehensive survey of signal transduction genes, we used homology-based cloning methods and transcriptome data mining to identity Gα subunits in the western tarnished plant bug (Lygus hesperus Knight). Among the nine sequences identified were single variants of the Gαi, Gαo, Gαs, and Gα12 subfamilies and five alternative splice variants of the Gαq subfamily. Sequence alignment and phylogenetic analyses of the putative L. hesperus Gα subunits support initial classifications and are consistent with established evolutionary relationships. End-point PCR-based profiling of the transcripts indicated head specific expression for LhGαq4, and largely ubiquitous expression, albeit at varying levels, for the other LhGα transcripts. All subfamilies were amplified from L. hesperus chemosensory tissues, suggesting potential roles in olfaction and/or gustation. Immunohistochemical staining of cultured insect cells transiently expressing recombinant His-tagged LhGαi, LhGαs, and LhGαq1 revealed plasma membrane targeting, suggesting the respective sequences encode functional G protein subunits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Asymmetric cell division, which plays fundamental roles in generating cell diversity during development, requires elaborate interactions between extrinsic cues and intrinsic cues. However, the precise nature of this type of interaction and its involving signaling mechanisms are poorly understood. Here, we demonstrate that Gαs is present in the proliferative region of ventricular zone in mouse developing neocortex and co-localizes with intrinsic cell fate determinant protein Numb in dividing apical progenitors. Targeted ablation of Gαs subunit in the cortical progenitor causes an alteration from asymmetric to symmetric cell division, consequently leading to increased progenitor proliferation. Mechanistically, we show that Gαs deletion significantly reduces Numb expression and activates notch signaling. Therefore, these results reveal a novel role of Gαs in control of neural progenitor asymmetric cell division via suppressing Numb mediated Notch signaling inhibition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Heterotrimeric G proteins function as key players in hydrogen peroxide (H2O2) production in plant cells, but whether G proteins mediate ethylene-induced H2O2 production and stomatal closure are not clear. Here, evidences are provided to show the Gα subunit GPA1 as a missing link between ethylene and H2O2 in guard cell ethylene signalling. In wild-type leaves, ethylene-triggered H2O2 synthesis and stomatal closure were dependent on activation of Gα. GPA1 mutants showed the defect of ethylene-induced H2O2 production and stomatal closure, whereas wGα and cGα overexpression lines showed faster stomatal closure and H2O2 production in response to ethylene. Ethylene-triggered H2O2 generation and stomatal closure were impaired in RAN1, ETR1, ERS1 and EIN4 mutants but not impaired in ETR2 and ERS2 mutants. Gα activator and H2O2 rescued the defect of RAN1 and EIN4 mutants or etr1-3 in ethylene-induced H2O2 production and stomatal closure, but only rescued the defect of ERS1 mutants or etr1-1 and etr1-9 in ethylene-induced H2O2 production. Stomata of CTR1 mutants showed constitutive H2O2 production and stomatal closure, but which could be abolished by Gα inhibitor. Stomata of EIN2, EIN3 and ARR2 mutants did not close in responses to ethylene, Gα activator or H2O2, but do generate H2O2 following challenge of ethylene or Gα activator. The data indicate that Gα mediates ethylene-induced stomatal closure via H2O2 production, and acts downstream of RAN1, ETR1, ERS1, EIN4 and CTR1 and upstream of EIN2, EIN3 and ARR2. The data also show that ETR1 and ERS1 mediate both ethylene and H2O2 signalling in guard cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Comment
    Previous studies on the activity of the rice Gα promoter using a β-Glucuronidase (GUS) reporter construct indicated that Gα expression was highest in developing organs and changed in a developmental stage-dependent manner. In this paper, GUS activity derived from the rice Gα promoter was analyzed in seeds and developing leaves. In seeds, GUS activity was detected in the aleurone layer, embryo, endosperm and scutellar epithelium. In developing leaves, the activity was detected in the mesophyll tissues, phloem and xylem of the leaf sheath and in the mesophyll tissue of the leaf blade. The activity in the aleurone layer and scutellar epithelium suggests that the Gα subunit may be involved in gibberellin signaling. The activity in the mesophyll tissues of the leaf blade suggests that the Gα subunit may be related to the intensity of disease resistance. The pattern of the activity in the developing leaf also indicates that the expression of Gα follows a developmental profile at the tissue level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号