First-principles

第一原则
  • 文章类型: Journal Article
    对谷指数进行工程是必不可少的,也是谷物理学的高度追求,但是目前,它完全基于具有挑战性的铁磁谷的范例,在磁场下具有自旋取向反转。这里,另一种策略,即,所谓的铁电谷,被提议解决不可克服的自旋方向逆转,用可行的铁电性反转谷值。使用对称参数和紧密绑定模型,展示了C2z旋转,以便能够代替时间反转来操作二维多铁kagome晶格中的谷指数,这使得铁电性工程谷指数,从而产生了铁电谷的概念。根据第一性原理计算,在单层Ti3Br8的呼吸kagome晶格中进一步证明了这一概念,其中铁电性与呼吸过程耦合。这些发现为Valleytronics和2D材料研究开辟了新的方向。
    Engineering the valley index is essential and highly sought for valley physics, but currently, it is exclusively based on the paradigm of the challenging ferrovalley with spin-orientation reversal under a magnetic field. Here, an alternative strategy, i.e., the so-called ferroelectrovalley, is proposed to tackle the insurmountable spin-orientation reversal, which reverses the valley index with the feasible ferroelectricity. Using symmetry arguments and the tight-binding model, the C2z rotation is unveiled to be able to take the place of time reversal for operating the valley index in two-dimensional multiferroic kagome lattices, which enables a ferroelectricity-engineered valley index, thereby generating the concept of a ferroelectrovalley. Based on first-principles calculations, this concept is further demonstrated in the breathing kagome lattice of single-layer Ti3Br8, wherein ferroelectricity couples with the breathing process. These findings open a new direction for valleytronics and 2D materials research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    一类齐格勒-纳塔催化剂(ZNC)-具有三乙基铝(AlEt3)的TiCl4/MgCl2,在乙烯聚合过程中得到了广泛的应用。尽管Ti物种起着主要活性位点的作用,Ti种类的增加并不总是提高ZNC的活性。在这里,实验和密度泛函理论(DFT)的研究阐明了由于预处理过程,ZNC中TiCl4沉积量增加的这种反效应。然而,ZNC对预处理的MgCl2的活性下降到未预处理的活性的60%。DFT表明预处理增强了TiCl4与ZNC之间的相互作用,尤其是在(104)表面上,形成TiCl4-TiCl4团簇。在ZNC(104)表面上发现的这种TiCl4-TiCl4簇的存在削弱了第一个AlEt3分子的吸附并阻碍了进一步的烷基化过程,使烷基化TiCl4-TiCl4簇的另一个Ti位点失活。然而,在ZNC(110)上发现的TiCl4-TiCl4团簇的难以形成是一个重要的关键点,可以通过促进烷基化过程来激活该表面上所有吸附的TiCl4。此外,MgCl2(110)表面的存在显著阻止了TiCl4-TiCl4团簇的形成。因此,建议ZNC上(110)平面的存在在控制ZNC的性能中起着关键作用,特别是通过防止由TiCl4的聚集引起的失活的稳定性。
    One class of the Ziegler-Natta catalysts (ZNC) - the TiCl4/MgCl2 having triethyl aluminum (AlEt3), has been widely utilized during ethylene polymerization. Although the Ti species plays the role of a major active site, an increase of Ti species does not always improve the activity of ZNC. Herein, investigations of experiments and density functional theory (DFT) elucidate this inverse effect of the increased amount of TiCl4 deposition in ZNC because of the pretreatment process. However, the activity of ZNC on pretreated MgCl2 dropped to 60% of the unpretreated one. The DFT demonstrates that the pretreatment strengthened the interaction between TiCl4 and ZNC, especially on the (104) surface, forming the TiCl4-TiCl4 cluster. The existence of this TiCl4-TiCl4 cluster found on the ZNC (104) surface weakens the adsorption of the first AlEt3 molecule and obstructs further alkylation process, making another Ti site of the alkylated TiCl4-TiCl4 cluster inactive. However, the difficult formation of the TiCl4-TiCl4 cluster found on the ZNC (110) is an important key point that enables the activation of all adsorbed TiCl4 on this surface by facilitating the alkylation process. Moreover, the existence of the MgCl2 (110) surface prevents the formation of the TiCl4-TiCl4 cluster significantly. Hence, it is suggested that the existence of the (110) plane on ZNC plays a key role in controlling the performance of the ZNC, especially the stability via the prevention of deactivation caused by the clustering of TiCl4.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    传统的试错法严重限制和制约了高性能阳极和电解质材料的快速发展,以有效和高效的方式搜索各种阳极-固体电解质界面的巨大参数空间是关键问题。这里,提出了一种结合机器学习和第一原理的新型计算策略,以实现氧化物和硫化物电解质的高效高通量筛选,用于高度稳定的碳氧化硅全固态电池。第一性原理计算表明,材料类型和元素掺杂对碳氧化硅与各种电解质之间的界面相容性具有重要意义。通过提出几种新颖的描述符,包括界面粘附力和冷冻系统的形成能,并且计算成本较低,所需培训数据的数量显著减少。梯度提升回归树模型显示,对于界面形成能的预测,平均绝对误差低,为0.09,R2高,为0.99,证明了算法的超高精度和可靠性。本工作发现了一系列未经研究的稳定阳极-固体电解质界面对,用于进一步的实验准备。
    Traditional trial-error approach severely limits and restricts rapid development of high-performance anode and electrolytes materials, searching huge parameters space of various anode-solid electrolyte interfaces in an effective and efficient way is the key issue. Here, a novel computational strategy combining machine learning and first-principles is proposed to achieve efficient high-throughput screening of oxides and sulfides electrolytes for highly stable silicon oxycarbide all-solid-state batteries. First-principles calculations demonstrate significant compact of material type and elemental doping on interfacial compatibility between silicon oxycarbide and various electrolytes. By proposing several novel descriptors including interfacial adhesion and formation energies of frozen system with low computation cost, the amounts of demanded trainings data are significantly reduced. Gradient-boosted regression tree model shows low mean absolute errors of 0.09 and high R2 value of 0.99 for the prediction of interface formation energy, demonstrating ultrahigh accuracy and reliability of the algorithm. The present work discovers a series of uninvestigated stable anode-solid electrolytes interfacial couples for further experimental preparation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于密度泛函理论中的第一性原理计算,我们系统地研究了可能的界面结构,磁性,全Heusler合金Co2MnGe/CoTiMnGe(100)异质结的电子性能。计算表明,Co2MnGeHeusler合金是半金属,磁矩为4.97μB。CoTiMnGe是窄带隙半导体并且可以充当超敏感光催化剂。在CoCo终止和MnGe终止中,我们找不到100%的“理想”自旋极化。由于界面交互,直接磁性杂交或间接RKKY交换将被削弱,导致界面层的原子磁矩增加。对于八种可能的异质结结构,Co2MnGe块体中的半金属间隙已被不可避免的界面态破坏。CoCo-TiGe-B异质结中94.31%的自旋极化值表明它是最稳定的结构。通过人工构造合适的全赫斯勒合金异质结来寻找高性能的磁隧道结是可行的。
    Based on first-principles calculations in the density functional theory, we systematically investigated the possible interface structure, magnetism, and electronic properties of the all-Heusler alloy Co2MnGe/CoTiMnGe(100) heterojunction. The calculation indicated that the Co2MnGe Heusler alloy is a half-metal with a magnetic moment of 4.97 μB. CoTiMnGe is a narrow-band gap semiconductor and may act as an ultra-sensitive photocatalyst. We cannot find an \"ideal\" spin-polarization of 100% in CoCo termination and MnGe termination. Due to the interface interaction, the direct magnetic hybridization or indirect RKKY exchange will be weakened, leading to an increase in the atomic magnetic moment of the interfacial layer. For eight possible heterojunction structures, the half-metallic gaps in the Co2MnGe bulk have been destroyed by the inevitable interface states. The spin-polarization value of 94.31% in the CoCo-TiGe-B heterojunction revealed that it is the most stable structure. It is feasible to search for high-performance magnetic tunnel junction by artificially constructing suitable all-Heusler alloy heterojunctions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    用于可充电钠离子电池的电极材料的概念化和部署是下一代能量存储系统的关键问题。在这一贡献中,基于第一性原理计算,系统地讨论了单层GeSiBi2的结构稳定性,并进一步研究了其作为阳极材料的潜力。表明声子光谱证实了动态稳定性,吸附能鉴定了Na原子与基底材料之间的强相互作用。表明固有金属性的电子带有助于Na吸附后电子电导率的增强。Na的多层吸附提供了361.7mAh/g的理论容量,这与其他代表性的二维阳极材料相当。此外,0.19和0.15eV的低扩散势垒进一步保证了快速扩散动力学。这些贡献表明GeSiBi2可以是钠离子电池阳极的兼容候选物。
    The conceptualization and deployment of electrode materials for rechargeable sodium-ion batteries are key concerns for next-generation energy storage systems. In this contribution, the configuration stability of single-layer GeSiBi2 is systematically discussed based on first-principles calculations, and its potential as an anode material is further investigated. It is demonstrated that the phonon spectrum confirms the dynamic stability and the adsorption energy identifies a strong interaction between Na atoms and the substrate material. The electronic bands indicative of inherent metallicity contribute to the enhancement of electronic conductivity after Na adsorption. The multilayer adsorption of Na provides a theoretical capacity of 361.7 mAh/g, which is comparable to that of other representative two-dimensional anode materials. Moreover, the low diffusion barriers of 0.19 and 0.15 eV further guarantee the fast diffusion kinetics. These contributions signal that GeSiBi2 can be a compatible candidate for sodium-ion batteries anodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    范德华半导体Bi4O4SeCl2由于其极小的晶格热导率,最近引起了极大的兴趣,这可能在能量转换领域找到可能的应用。在这里,我们使用第一性原理计算和Boltzmann输运理论准确预测Bi4O4SeCl2的热电输运性质,其中载流子弛豫时间是通过充分考虑电子-声子耦合获得的。发现沿面内方向在1100K处可以达到3.1的最大p型ZT值,这源于多谷带结构引起的塞贝克系数增加,以及由相对更强的层内结合引起的增强的导电性。此外,有趣的是,可以在某些温度区域实现相当的p型和n型ZT值,这在热电模块的制造中是非常理想的。
    The van der Waals semiconductor Bi4O4SeCl2 has recently attracted great interest due to its extremely small lattice thermal conductivity, which may find possible application in the field of energy conversion. Herein, we accurately predict the thermoelectric transport properties of Bi4O4SeCl2 using first-principles calculations and Boltzmann transport theory, where the carrier relaxation time is obtained by fully considering the electron-phonon coupling. It is found that a maximum p-type ZT value of 3.1 can be reached at 1100 K along the in-plane direction, which originates from increased Seebeck coefficient induced by multivalley band structure, as well as enhanced electrical conductivity caused by relatively stronger intralayer bonding. Besides, it is interesting to note that comparable p- and n-type ZT values can be realized in certain temperature regions, which is very desirable in the fabrication of thermoelectric modules.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:这项研究探讨了变形对具有空位的单层碲化镉(MoTe2)的电学和光学特性的影响,利用密度泛函理论的基本原理。发现应变和缺陷都会改变单层MoTe2的电特性。在VTe-MoTe2下,发生直接到间接的带隙跃迁。在DTe-MoTe2中,带隙值急剧下降,导带向下变化,载流子浓度上升。DVTe诱导的带隙状态比VTe诱导的带隙状态更接近费米能级。在本文中,选择DTe-MoTe2用于拉伸变形。结果表明,随着拉伸变形的增加,带隙值趋于减小。当拉伸值达到10%时,导带的下限和价带的顶部重叠,系统从半导体转变为金属。考虑到状态的密度,缺失的状态MoTe2主要是由Te-s的参与贡献的,Te-p,和Mo-d轨道。在光学质量方面,吸收和反射峰发生红移和蓝移,分别。希望这些对光电性能的影响将得到广泛应用。
    方法:在本研究中,我们利用广义梯度近似平面波伪势方法,结合Perdew-BurkeErnzerhof(PBE)广义函数,并遵循密度泛函理论框架的基本原理。基于MoTe2单层构建了一个3×3×1的超电池作为未掺杂模型,由9个Mo原子和18个Te原子组成。将真空平板沿z方向设置为15A以避免单层之间的相互作用。对于电子结构计算,能量截止设定为450eV。使用Monkhorst-Pack专用K点采样方法进行了每个模型的计算过程和结构优化。晶体优化计算将3×3×1Monkhorst-PackK点网格用于二碲化钼单层,并将9×9×1K点网格用于电子系统分析,分析状态密度和光学特性,分别。对于结构优化,最大力的收敛要求,最大原子位移,最大应力,能量变化定义为0.03eV/µ,0.001贝达,0.05Gpa,和1.0×10-5eV/原子,分别。
    BACKGROUND: This study explores the impact of deformation on the electrical and optical characteristics of monolayer cadmium telluride (MoTe2) with vacancies, using the foundational principles of density functional theory. It was discovered that both strain and imperfections alter the electrical characteristics of monolayer MoTe2. Under VTe-MoTe2, a direct-to-indirect band-gap transition occurs. In DTe-MoTe2, the band-gap value reduces dramatically, the conduction band changes downward, and the carrier concentration rises. The DVTe-induced band gap state is closer to the Fermi energy level than the VTe-induced band gap state. In this paper, DTe-MoTe2 is chosen for tensile deformation. The results show that the band-gap value tends to decrease by increasing tensile deformation. When the stretching value reaches 10%, the lower bound of the conduction band and the top of the valence band overlap, and the system is converted from a semiconductor to a metal. Considering the density of states, the missing state MoTe2 is mainly contributed by the participation of Te-s, Te-p, and Mo-d orbitals. In terms of optical qualities, the absorption and reflection peaks are red-shifted and blue-shifted, respectively. It is hoped that these effects on the optoelectronic properties will be widely applied.
    METHODS: In this study, we utilize the generalized gradient approximation plane-wave pseudopotential method, incorporating Perdew-Burke Ernzerhof (PBE) generalized functions and following the fundamental principles of the density functional theory framework. A 3 × 3 × 1 supercell was constructed as an undoped model based on a MoTe2 monolayer, which consists of 9 Mo atoms and 18 Te atoms. The vacuum flat plate was set to 15 Å along the z-direction to avoid interactions between the monolayers. For electronic structure calculations, the energy cutoff was set to 450 eV. Each model\'s computational process and structural optimization were carried out using the Monkhorst-Pack specialized K-point sampling approach. Crystal optimization computations used a 3 × 3 × 1 Monkhorst-Pack K-point grid for molybdenum ditelluride monolayers and a 9 × 9 × 1 K-point grid for electronic system analysis, analyzing state density and optical characteristics, respectively. For the structural optimization, the convergence requirements for maximum force, maximum atom displacement, maximum stress, and energy change were defined at 0.03 eV/Å, 0.001 Å, 0.05 Gpa, and 1.0 × 10-5 eV/atom, respectively.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在本文中,晶体的几何形状,电子结构,晶格振动,三元层状硼化物M3AlB2(M=Ti,Zr,Hf,Ta)采用基于密度泛函理论的第一性原理计算方法进行了研究。M3AlB2的电子结构表明它们都是电导体,还有Ti的d轨道,Zr,Hf,Ta占据导带底部的大部分和价带顶部的大部分。Al和B在其费米能级附近具有较低的贡献。原子B的轻质和更强的化学键是对应于红外和拉曼光谱中更高水平的峰位置的重要因素。然而,振动频率,态的声子密度,由于M和Al原子的质量较大,化学键较弱,红外和拉曼光谱的峰位置明显较低。And,有6种红外激活模式A2u和E1u,和7个拉曼活性模式,即A1g,E2g,和E1g对应于M3AlB2中不同的振动频率。此外,分别获得了M3AlB2的红外和拉曼光谱,为实验研究提供了可靠的红外和拉曼振动位置和强度的理论依据。
    In this paper, the crystal geometry, electronic structure, lattice vibration, Infrared and Raman spectra of ternary layered borides M3AlB2 (M = Ti, Zr, Hf, Ta) are studied by using first principles calculation method based on the density functional theory. The electronic structure of M3AlB2 indicates that they are all electrical conductors, and the d orbitals of Ti, Zr, Hf, and Ta occupy most of the bottom of the conduction band and most of the top of the valence band. Al and B have lower contributions near their Fermi level. The lightweight and stronger chemical bonds of atom B are important factors that correspond to higher levels of peak positions in the Infrared and Raman spectra. However, the vibration frequencies, phonon density of states, and peak positions of Infrared and Raman spectra are significantly lower because of heavier masses and weaker chemical bonds for M and Al atoms. And, there are 6 Infrared active modes A2u and E1u, and 7 Raman active modes, namely A1g, E2g, and E1g corresponding to different vibration frequencies in M3AlB2. Furthermore, the Infrared and Raman spectra of M3AlB2 were obtained respectively, which intuitively provided a reliable Infrared and Raman vibration position and intensity theoretical basis for the experimental study.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自旋电子学,在数据存储和传输中使用电子的自旋自由度,作为下一代信息技术的一个有前途的候选人,由于其提高的处理速度和降低的功耗。寻找和设计具有高自旋极化载流子的材料,并找到控制载流子自旋极化方向的有效方法是自旋电子学应用的关键和紧迫。在这方面,双极磁性半导体(BMS)是一种理想的解决方案,因为它可以产生具有100%自旋极化的电流,并且自旋极化的方向很容易通过外部栅极电压来调谐。到目前为止,通过第一性原理计算预测了很多BMS,然而,它们中的大多数是由化学或物理修饰外在诱导的,仍然缺乏设计BMS材料的通用方案。本文旨在简要回顾现有BMS材料的理论模拟设计,分析实验实现的主要障碍,并对今后的发展提出建议。
    Spintronics, which employs electrons\' spin degree of freedom in data storage and transmission, acts as a promising candidate for next-generation information technology owing to its improved processing speed and reduced power consumption. To seek and design materials with highly spin polarized carriers and find an efficient way to control the spin polarization direction of carriers are critical and urgent to spintronics applications. In this aspect, the bipolar magnetic semiconductor (BMS) serves as an ideal solution since it can generate currents with 100% spin polarization, and the direction of spin polarization is easily tunable by an external gate voltage. Up to now, there have been lots of BMSs predicted by first-principles calculations, however, most of them are extrinsically induced by chemical or physical modifications, and a generalized scheme for designing BMS materials is still lacking. This paper is aimed to briefly review the existing BMS materials designed by theoretical simulations, analyze the main obstacles to experimental realization, and put forward suggestions for future development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    二维(2D)铁电体(FE),在超薄膜中保持稳定的电极化,是开发各种微型功能器件的一类有前途的材料。近年来,通过实验已经成功制造了几个具有独特性能的2DFE。已发现它们本身或与其他功能材料偶联时都表现出一些独特的性能(例如,铁磁材料,具有5d电子的材料,等。).因此,已经开发了几种新型的2DFE功能器件,表现出优异的性能。作为一种新发现的二维功能材料,2DFE的数量和对其属性的探索仍然有限,这需要进一步的理论预测。本文总结了2DFE材料理论预测的最新进展,并为2DFE材料的合理设计提供了策略。本次审查的目的是为2DFE材料和相关功能器件的设计提供指导。
    Two-dimensional (2D) ferroelectrics (FEs), which maintain stable electric polarization in ultrathin films, are a promising class of materials for the development of various miniature functional devices. In recent years, several 2D FEs with unique properties have been successfully fabricated through experiments. They have been found to exhibit some unique properties either by themselves or when they are coupled with other functional materials (e.g., ferromagnetic materials, materials with 5d electrons, etc.). As a result, several new types of 2D FE functional devices have been developed, exhibiting excellent performance. As a type of newly discovered 2D functional material, the number of 2D FEs and the exploration of their properties are still limited and this calls for further theoretical predictions. This review summarizes recent progress in the theoretical predictions of 2D FE materials and provides strategies for the rational design of 2D FE materials. The aim of this review is to provide guidelines for the design of 2D FE materials and related functional devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号