Fast diffusion kinetics

  • 文章类型: Journal Article
    与Zn2+储存相比,水合尺寸小,重量轻的非金属电荷载体对Zn-有机电池具有快速的脱水和扩散动力学。在这里,我们首先报告了通过对苯醌(BQ)和2,6-二氨基蒽醌(DQ)聚合物通过H键和π-π堆叠的分子间相互作用在自组装有机超结构(OS)中的NH4/H共存储。BQ-DQOS表现出暴露的四重活性羰基基序和超电子离域途径,它们与高动力学NH4/H仅氧化还原偶联,但排除了缓慢和刚性的Zn2离子。一个独特的4-NH4+/H+共协调机制被揭开,为BQ-DQ阴极提供高容量(1Ag-1时为299mAhg-1),大电流公差(100Ag-1)和超长寿命(50,000次循环)。该策略通过调节氧化还原活性建筑单元,进一步将容量提高到358mAhg-1,为有机材料中的超快速和稳定的NH4+/H+储存提供新的见解,以实现更好的Zn电池。
    Compared with Zn2+ storage, non-metallic charge carrier with small hydrated size and light weight shows fast dehydration and diffusion kinetics for Zn-organic batteries. Here we first report NH4 + /H+ co-storage in self-assembled organic superstructures (OSs) by intermolecular interactions of p-benzoquinone (BQ) and 2, 6-diaminoanthraquinone (DQ) polymer through H-bonding and π-π stacking. BQ-DQ OSs exhibit exposed quadruple-active carbonyl motifs and super electron delocalization routes, which are redox-exclusively coupled with high-kinetics NH4 + /H+ but exclude sluggish and rigid Zn2+ ions. A unique 4e- NH4 + /H+ co-coordination mechanism is unravelled, giving BQ-DQ cathode high capacity (299 mAh g-1 at 1 A g-1 ), large-current tolerance (100 A g-1 ) and ultralong life (50,000 cycles). This strategy further boosts the capacity to 358 mAh g-1 by modulating redox-active building units, giving new insights into ultra-fast and stable NH4 + /H+ storage in organic materials for better Zn batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CeO2的准电容特性在很大程度上取决于其表面法拉第氧化还原反应动力学;然而,由于低效的扩散高速公路和有限的活性位点,其电化学性能仍然受到低利用率的限制。在这里,我们通过简单的模板约束策略,然后进行化学共沉淀,制备了由缺氧CeO2量子点(0D)锚定在3D中空多孔N掺杂碳框架(CeO2-xQD@PHC)上的0D/3D复合材料。精细的QD和中空结构大大缩短了离子扩散路径,并降低了循环过程中的内部应变。具有PHC结构的CeO2-x量子点的集成赋予了丰富的可访问活性位点并增强了电性能。因此,与不含CeO2-x的PHC相比,优化的CeO2-xQD@PHC表现出改善的比电容和良好的倍率性能。此外,构建了以CeO2-xQD@PHC为电极的对称超级电容器,在149.98Wkg-1的功率密度下提供3.874Whkg-1的高能量密度。
    The pseudocapacitive properties of CeO2 are largely dependent on its surface Faradaic redox reaction kinetics; however, its electrochemical performance is still limited by the low utilization due to the inefficient diffusionfreeways and the limited active sites. Herein, we prepare a 0D/3D composite composed of oxygen-deficient CeO2 quantum dots (0D) anchored on a 3D hollow porous N-doped carbon framework (CeO2-x QD@PHC) via a facile template-confined strategy followed by a chemical co-precipitation. The refined QDs and hollow structure greatly shorten the ion diffusion paths and lower the internal strain during cycling. The integration of CeO2-x QDs with PHC structure endows enriched accessible active sites and enhances the electrical properties. As a result, the optimized CeO2-x QD@PHC exhibits an improved specific capacitance and good rate performance in comparison to those of the CeO2-x-free PHC. Moreover, a symmetric supercapacitor with CeO2-x QD@PHC as an electrode is constructed, delivering a high energy density of 3.874 Wh kg-1 at a power density of 149.98 W kg-1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    快速充电速率和大储能是电动汽车锂离子电池(LIB)的关键要求。开发具有可在高速率下操作的高体积和重量容量的电极材料是最具挑战性的问题。在这项工作中,提出了一种用于Li/Na离子电池的具有增强的综合电化学性能的致密碳材料的通用多界面策略。将氧化石墨烯和蔗糖溶液的混合物喷雾到水/油系统中并进一步碳化以获得石墨烯/硬碳球(GHS)。在这种材料中,结晶石墨烯和碳基质之间丰富的巧妙的内部界面是在硬碳球内部创建的。构造的界面不仅可以作为蔗糖热解过程中产生的挥发性气体逸出的途径,以防止形成丰富的孔隙,导致0.910gcm-3的高包装密度和13.3m2g-1的低表面积,但也可以为离子和电子提供导电的“高速公路”。当用作LIB和钠离子电池(SIB)的阳极材料时,GHS显示出高重量/体积可逆容量,高速率性能,同时具有低温特性,暗示着在实际LIB和SIB中的巨大潜在应用。
    Fast charging rate and large energy storage are key requirements for lithium-ion batteries (LIBs) in electric vehicles. Developing electrode materials with high volumetric and gravimetric capacity that could be operated at a high rate is the most challenging problem. In this work, a general multi-interface strategy toward densified carbon materials with enhanced comprehensive electrochemical performance for Li/Na-ion batteries is proposed. The mixture of graphene oxide and sucrose solution is sprayed into a water/oil system and furtherly carbonized to get graphene/hard carbon spheres (GHSs). In this material, abundant ingenious internal interfaces between the crystalline graphene and the carbon matrix are created inside the hard carbon spheres. The constructed interfaces can not only work as a pathway for the escape of volatile gas generated during sucrose pyrolysis to prevent the formation of abundant pores, which leads high packing density of 0.910 g cm-3 and low surface area of 13.3 m2  g-1 , but can also provide a conductive \"highway\" for ions and electrons. When used as the anode material for both LIBs and sodium-ion batteries (SIBs), the GHS shows the high gravimetric/volumetric reversible capacities, high-rate performance, and low temperature properties simultaneously, implying the great potential application in practical LIBs and SIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号